TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	. Government Access	ion No.	3. Recipient's Cotalog No.				
FHWA/TX-90/452-2							
4. Title and Subsiste Use of Climatic Data for the	Drodiction		5. Report Date November 1989				
of Permanent Deformation in Flexible Pavements			6. Performing Organization Code				
			· · · · · · · · · · · · · · · · · · ·				
7 Author's)	<u></u>	/	8. Performing Organization Report No.				
Jun Li, Mikael J. P. Olsen,	and Dallas N	little	Research Report 452-2				
9. Performing Organization Name and Address Toxas Thansportation Institu	+		10. Work Unit No.				
Texas Transportation Institu The Texas A&M University Sys		ŀ	11. Contract or Grant No.				
College Station, Texas 7784)	Study No. 2-8-86-452				
		F	13. Type of Report and Period Covered				
12. Sponsoring Agency Name and Address			Sontombon 1005				
Texas State Department of Hi			Interim - November 1985				
Transportation; Transportati	on Planning D	i i i i i i i i i i i i i i i i i i i					
Austin, Texas 78763		ļ	14. Sponsoring Agency Code				
15. Supplementary Notes		1					
Research performed in cooperation	ation with DO	Γ, FHWA.					
16. Abstract							
The purpose of this	report is to	present a metho	od that uses				
climatic data for the predic	tion of perma	nent deformatio	on in asphalt				
overlays on the top of concr							
climatic data from the Dalla							
temperature variations in as							
computer program. After extended to simula							
overlays, and a small number	of mini-sees	nalure fluctua nal profiles y	vere obtained				
to describe the temperature							
deformation by a modified fin							
regression model can also be							
between temperature variation							
method can be applied to low							
and resilience studies, and o			t system,				
meteorological condition and	geographical	location.					
17. Key Words		18. Distribution Statem	en†				
Climatic Data, Flexible Paver	nents	No restriction	ns. This document is				
Finite-Element, Temperature F			the public through the				
Permanent Deformation, Rut De			nical Information Service				
· · · · · · · · · · · · · · · · · · ·		5285 Port Rova	1 Road				
10		Springfield, \	/irginia 22161 21- No. of Poges 22. Price				
19. Security Classif. (of this report)	20. Security Classi						
Unclassified	Unclassif	led	84				
Form DOT F 1700.7 (8-69)		<u> </u>					

USE OF CLIMATIC DATA FOR THE PREDICTION OF PERMANENT DEFORMATION IN FLEXIBLE PAVEMENTS

by

Jun Li Research Assistant

Mikael J. P. Olsen Engineering Research Associate

and

Dallas N. Little Research Engineer

Research Report 452-2 Research Study 2-8-86-452

Sponsored by Texas State Department of Highways and Public Transportation In cooperation with U.S. Department of Transportation, Federal Highway Administration

> Texas Transportation Institute Texas A&M University System College Station

> > November, 1989

METRIC (SI*) CONVERSION FACTORS

	APPROXIMATE	CONVERSIO	ONS TO SI UNITS			A	PPROXIMATE C	ONVERSIO	NS TO SI UNITS	j
Symbol	When You Know	Multiply By	To Find	Symbol	Syı	mbol V	When You Know	Multiply By	To Find	Symbo
		LENGTH	.					LENGTH		
in ft yd mi	inches feet yards miles	2.54 0.3048 0.914 1.61	millimetres metres metres kilometres	mm m m km		nn n nn n	nillimetres netres netres kilometres	0.039 3.28 1.09 0.621	inches feet yards miles	in ft yd mi
· · ·			·					AREA	· · ·	
in² ft² yd² mi²	square inches square feet square yards	AREA 645.2 0.0929 0.836 2.59	millimetres squared metres squared metres squared kilometres squared	mm² m² m² km²		m²n km²k	nillimetres squared netres squared kilometres squared nectores (10 000 m²)	0.0016 10.764 0.39 2.53	square inches square feet square miles acres	in² ft² mi² ac
ac	square miles acres	2.59 0.395	hectares	ha			MA	SS (weigh	nt)	
		ASS (weig	ght)			kg k	grams kilograms negagrams (1 000 kg	0.0353 2.205	ounces pounds short tons	oz Ib T
oz Ib T	ounces pounds short tons (2000	28.35 0.454 Ib) 0.907	grams kilograms megagrams	g kg Mg				VOLUME		
		VOLUME				L li m³ r	nillilitres itres metres cubed metres cubed	0.034 0.264 35.315 1.308	fluid ounces gations cubic feet cubic yards	fl oz gal ft ³ yd ³
fi oz gai ft ^a	fluid ounces gallons cubic feet	29.57 3.785 0.0328	mililitres litres metres cubed	տև Լ տ ³			TEMPE	RATURE	-	•
yd³ NOTE: V	cubic yards olumes greater than	0.0765 1000 L shall be	metres cubed shown in m ³ .	W,				(then I Id 32)	Fahrenheit temperature	٥F
6 5		PERATURE	·	20		· _	°F 32 40 0 40 40 - 20 0 °C	98.6 80 120 20 40 37	°F 212 160 200 60 80 100 °C	,
°F	Fahrenheit 5 temperature	/9 (after subtracting 32)	Celsius) temperature	°C	 The	ese facto	ors conform to the re	quirement of I	HWA Order 5190.14	.

* SI is the symbol for the International System of Measurements

ABSTRACT

The purpose of this report is to present a method that uses climatic data for the prediction of permanent deformation in asphalt overlays on the top of concrete pavements. Thirty years of detailed climatic data from the Dallas area were collected to calculate the temperature variations in asphalt concrete overlays by a heat transfer computer program. After extensive statistical analysis, a regression model was developed to simulate the temperature fluctuations in asphalt overlays, and a small number of mini-seasonal profiles were obtained to describe the temperature variations for the prediction of permanent deformation by a modified finite-element computer program. The regression model can also be used as a means to find a relationship between temperature variations and traffic patterns. This analysis method can be applied to low temperature thermal cracking prediction and resilience studies, and can be used for any pavement system, meteorological condition and geographical location.

TABLE OF CONTENTS

	Page
INTRODUCTION	1
GENERAL	
CLIMATIC CONSIDERATIONS	8
ASSUMPTIONS	8 9 9
STATISTICAL ANALYSIS	14
PRIMARY DATA ANALYSIS <td< td=""><td>14 16 21</td></td<>	14 16 21
WINTER PERIOD. Yes TYPICAL COST OF ANALYSIS Yes	34 34 34
COMPUTER MODEL	39
GENERAL	39 40 41 43
	· .
TRAFFIC CONSIDERATIONS	47
ADDITIONAL APPLICATIONS	52
SUMMARY AND CONCLUSIONS	54
SUMMARY	54 54
REFERENCES	56
APPENDIX A	58
APPENDIX B	61
APPENDIX C	62

LIST OF TABLES

Table		Page
1	Coefficient and R^2 Values (Dallas Area)	18
2	Temperature Distribution of 2 in. Asphalt Overlay (Dallas Area)	19
3	Temperature Distribution of 3 in. Asphalt Overlay (Dallas Area)	19
4	Temperature Distribution of 4 in. Asphalt Overlay (Dallas Area)	20
5	Temperature Distribution of 5 in. Asphalt Overlay (Dallas Area)	20
6	Coefficient and R^2 Values (Austin Area)	22
7	Temperature Distribution of 2 in. Asphalt Overlay (Austin Area)	23
8	Temperature Distribution of 3 in. Asphalt Overlay (Austin Area)	23
9	Temperature Distribution of 4 in. Asphalt Overlay (Austin Area)	24
10	Temperature Distribution of 5 in. Asphalt Overlay (Austin Area)	24
11	Coefficient and R^2 Values (Midland Area)	25
12	Temperature Distribution of 2 in. Asphalt Overlay (Midland Area)	26
13	Temperature Distribution of 3 in. Asphalt Overlay (Midland Area)	26
14	Temperature Distribution of 4 in. Asphalt Overlay (Midland Area)	27
15	Temperature Distribution of 5 in. Asphalt Overlay (Midland Area)	27
16	Coefficient and R^2 Values (Amarillo Area)	28
17	Temperature Distribution of 2 in. Asphalt Overlay (Amarillo Area)	29
18	Temperature Distribution of 3 in. Asphalt Overlay (Amarillo Area)	29

LIST OF TABLES (continued)

Table

19	Temperature Distribution of 4 in. Asphalt Overlay (Amarillo Area)	30
20	Temperature Distribution of 5 in. Asphalt Overlay (Amarillo Area)	30
21	Comparisons of Temperature Distributions with Dallas Area	31
22	Coefficient and R^2 Values (Dallas Area, Winter Period)	35
23	Winter Temperature Distribution of 2 in. Asphalt Overlay (Dallas Area)	37
24	Winter Temperature Distribution of 3 in. Asphalt Overlay (Dallas Area)	37
25	Winter Temperature Distribution of 4 in. Asphalt Overlay (Dallas Area)	38
26	Winter Temperature Distribution of 5 in. Asphalt Overlay (Dallas Area)	38
27	Temperature Distribution as a Function of Traffic of a 3 in. Asphalt Overlay (Dallas Area)	51
28	Temperature Distribution as a Function of Traffic of a 3 in. Asphalt Overlay	51

LIST OF FIGURES

Figure		Page
1	Average Monthly Pavement Temperature-Depth Relations.	4
2	Schematic Outline for rutting Depth Prediction	6
3	Schematic Outline of the Procedure for Temperature and Traffic Considerations.	7
4	Regional Map of Texas	10
· 5 _.	Average Monthly High Temperature of July	11
6	A Typical Finite-difference Pavement System	13
7	Comparison Between Dallas Area and Austin Area	32
8	New Regional Map of Texas	33
9	Pavement Structure Used in Example Analysis	44
10	Permanent Deformation of Example Pavement	46
11	Relative Frequency Histogram	48
12	Traffic Density Functions	49

IMPLEMENTATION STATEMENT

The regression models developed in this research offer the capability of defining the temperature profile within an asphalt concrete overlay at any location in Texas and at any time of day and year. The regression models can be used with traffic data, and the effects of temperature profile and traffic can be superimposed to evaluate the development of permanent deformation, rutting. This is achieved by incorporating the regression models and traffic density function into the modified ILLIPAVE computer program.

This procedure provides a realistic technique by which to analyze rutting case histories in asphalt concrete overlays over PCC pavements in Texas.

DISCLAIMER

The contents of this report reflect the view of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

There is no invention or discovery conceived or first actually reduced to practice in the course of or under this contract, including, any art, method, process, machine, manufacture, design or composition of matter, or any new and useful improvement thereof, or any variety of plant which is or may be patentable under the patent laws of the United States of America or any foreign country.

vi

INTRODUCTION

GENERAL

The permanent deformation, or rutting, of asphalt concrete pavements has in recent years attracted much attention because excessive rutting in pavements can create a serious safety hazard. However, most investigators have concentrated their efforts on developing mix design methods which permit mechanical optimization of the stability of asphalt mixes, while placing little emphasis on performance requirements related to pavement structure, climate, and traffic. Few methods of dealing with permanent deformation in a quantifiable and rational way have been used in practical pavement design. In most studies, one single temperature or a few seasonal temperatures with a uniform temperature distribution in the asphalt layers have been used to describe the variations of temperature. Usually, no relationship between temperature distributions and traffic distributions is considered.

One well known method is the Shell Method described in the Shell Pavement Design Manual (1). In this method, variations of temperature within asphalt layers and of traffic are considered with the following major assumptions (2, 3):

- The total thickness of the asphalt layer is divided into several sub-layers, and the temperature and mix properties are uniform and constant within each sub-layer.
- 2. The effective asphalt temperature for a year (T year) can be obtained from the weighted mean annual air temperature (w-MAAT). The weighing factor w takes the location and pavement structure into account. In other words, one effective temperature can be used to represent the total temperature variations in the whole analysis period.
- 3. Traffic density is uniformly distributed over the whole life of the pavement. There is no relationship between different temperature distributions and traffic patterns.

The impetus behind these assumptions is that temperature and traffic are difficult to predict and to determine accurately. However, mix properties, such as stiffness, are very susceptible to temperature changes. It is very doubtful that the effective asphalt temperature used for total rutting depth calculations could simulate the real life rutting accumulation of asphalt concrete pavements. For example, it is impossible to tell how much more rutting occurs during hot summer seasons than occurs during cold winter seasons, or how different traffic patterns could affect permanent deformation.

In a study conducted by ARE Inc. $(\underline{4})$, seasonal temperature variations for different locations have been taken into account. Four typical zones for the climatic conditions of Texas, each containing four seasonal temperatures for the whole asphalt layers, were developed:

ZONE	<u>SEASON</u>]	EMPERATURE *F
WET-FREEZE:	Winter		35
	Spring	a a trave	65
· · · · · · · · · · · · · · · · · · ·	Summer		95
	Fall	a Alar	60
WET-NO-FREEZE:	Winter		75
	Spring		95
	Summer	. **	105
	E Fall		60
DRY-FREEZE:	Winter		35
	Spring		65
	Summer		95
	Fall		50
DRY-NO-FREEZE:	Winter	4	55
· .	Spring		75
	Summer		95
	·		75

Since temperature gradients within asphalt layers were neglected, this approach results in a very rough estimation of the temperature

distributions in asphalt layers. In the study of the Brampton Test Road conducted by the University of Waterloo (5), the seasonal variations of the area and the temperature profiles within asphalt layers were both considered. The study was done based on the following three assumptions:

- Permanent deformation occurs daily over the interval 7:30 to 17:30 hours.
- 2. Permanent deformation occurs only in the period April through October
- Permanent deformation can be ignored at temperatures below 50°F.

Based on these assumptions, the average monthly temperature distributions shown in Figure 1 were obtained. The seven temperature profiles were used to represent the temperature variations within asphalt layers for a period of one year. Although the seasonal temperature variations and temperature gradients in asphalt layers are considered in this study, the following problems still remain to be addressed:

- In Texas the temperatures in asphalt layers after 5:30 P.M. is well above 50°F during summer months.
- The temperature differences in asphalt layers could be easily more than 30°F on hot summer days in Texas. One single profile does not reflect such large variations.

In the three methods discussed above the variations of temperatures in asphalt layers with depth of the layers has not been properly considered. Neither has the daily changes in the temperature combined with the changes in traffic pattern over the same period of time. Since rutting is influenced not only by the temperature and traffic loads, but also by the distribution and combination of temperature and loads with time, a more detailed analysis of these two major factors needs to be considered in the rutting analysis of asphalt pavement structures.

Based on the assumptions behind and results of the existing temperature models, a new model is needed which considers the varying

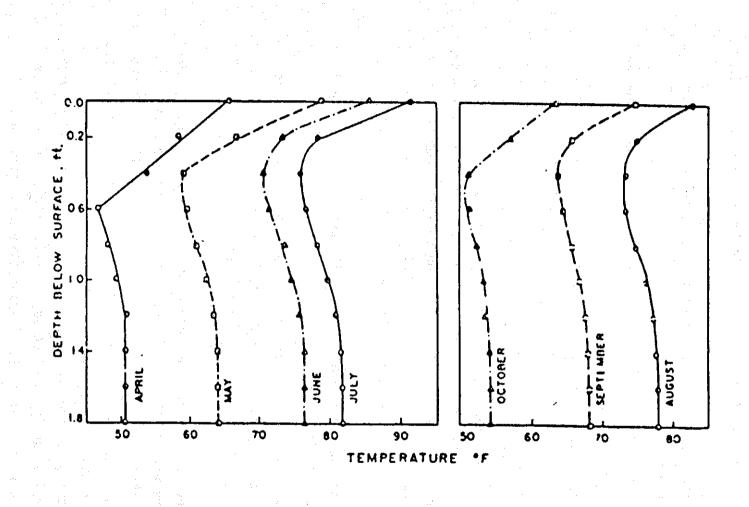
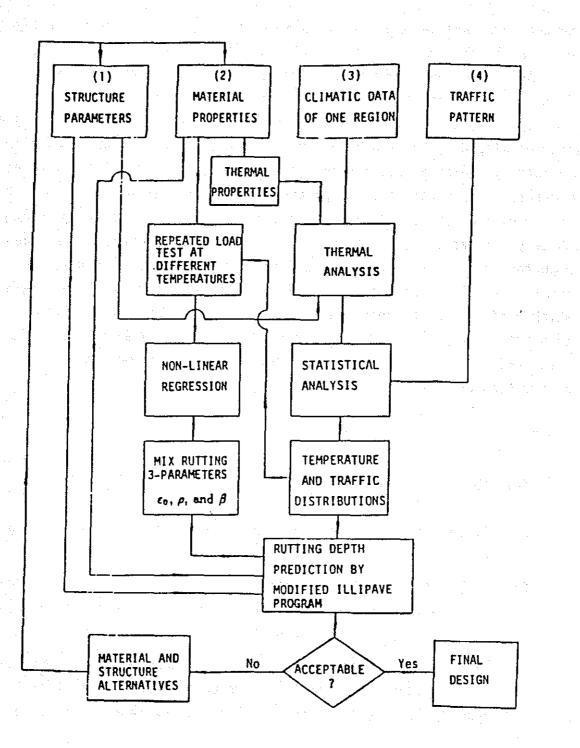
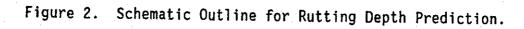
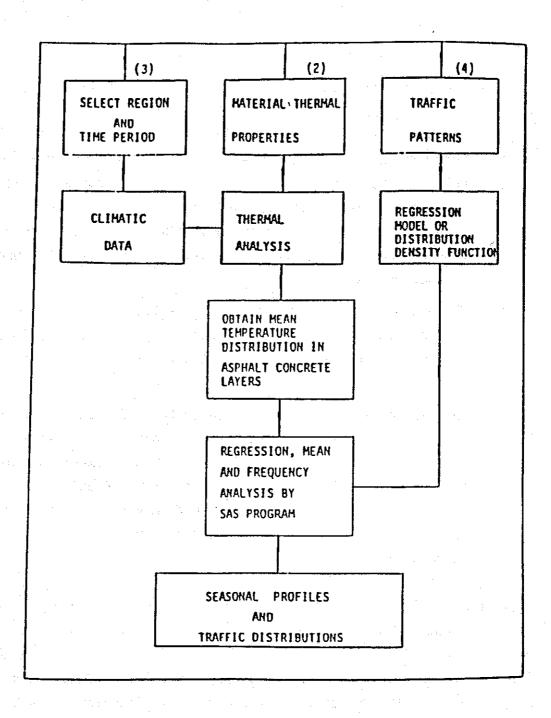


Figure 1. Average Monthly Pavement Temperature-Depth Relations.

temperatures and temperature profiles within the asphalt pavement layers, based on local and long term climatic history.


As part of an extensive research program to develop a rational procedure for predicting permanent deformation of asphalt concrete overlays on concrete pavements in Texas, a new methodology (Figure 2) has been developed at Texas A&M University. In this method, the prediction of rutting depths is based upon a new method of characterizing permanent deformation in terms of three parameters, and the use of this new method in a modified ILLIPAVE finite element computer program ($\underline{6}$, $\underline{7}$, $\underline{8}$). The three parameters, ϵ_0 , ρ , and B, are obtained from the results of creep or repeated load triaxial tests at different temperatures. To use this information it is necessary to develop a temperature distribution model which predicts the temperature range occurring in the field. This temperature range can then be used in the creep or repeated load triaxial tests at different temperature of permanent deformation at the predicted field temperatures.


OBJECTIVES


The objectives of this study are:

- 1. To develop a mathematical model which describes the temperature distributions in asphalt concrete overlays.
- To provide a number of temperature profiles, which reasonably represent the temperature variations in the asphalt overlays in Texas, for use in the prediction of permanent deformation.
- 3. To develop a method which effectively accounts for temperature distribution in the asphalt pavement layers and the traffic density functions in the evaluation of permanent deformation.

The schematic outline of the procedure for temperature and traffic considerations is shown in Figure 3.

Figure 3. Schematic Outline of the Procedure for Temperature and Traffic Considerations.

CLIMATIC CONSIDERATIONS

ASSUMPTIONS

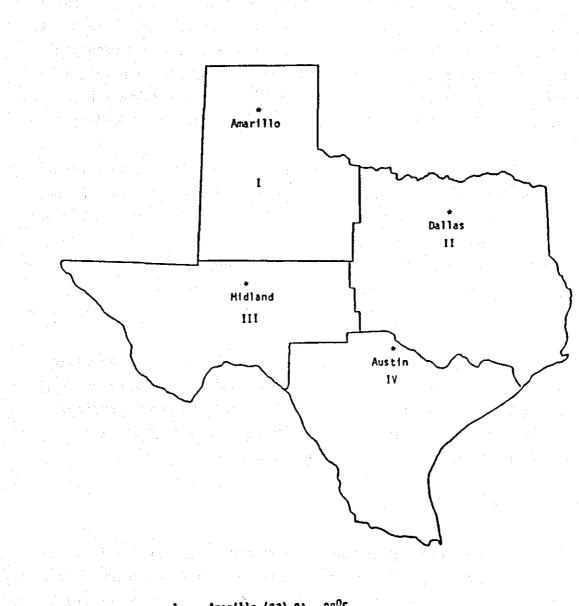
In order to simplify the analysis and to perform reliable statistical analysis, several assumptions were made.

- Permanent deformation occurs mostly in the period from May to October. For the remaining half year, it is assumed that the whole period may be treated as one single season. One temperature, a seasonal mean temperature with a uniform temperature distribution in the asphalt layer over the whole period, was used.
- 2. The accumulation of permanent deformation is independent of loading history and only dependent on total cycles of loading, loading frequencies and loading magnitude under certain temperature conditions.
- 3. The air temperature at a particular time of a day is correlated with the temperatures of the previous and future days at the same time of day. The same is true for the temperature in the asphalt layer. In other words, a correlation exists between today's 8 A.M. temperature, and yesterday's 8 A.M. temperature and today's 8 A.M. temperature and tomorrow's 8 A.M. temperature.

Assumption 1 is based on the fact that most rutting is accumulated during hot summer months. Under this assumption, the period of analysis can be reduced substantially. Assumption 2 is a reasonable and necessary assumption to characterize asphalt concrete materials. Under this assumption, it is assumed that asphalt mixes are viscoelastic materials and that the stiffness of the mix is a function of temperature and loading frequency only. Assumption 3 is based on the nature of meteorology, and the assumption is essential to reduce the variance in statistical analysis.

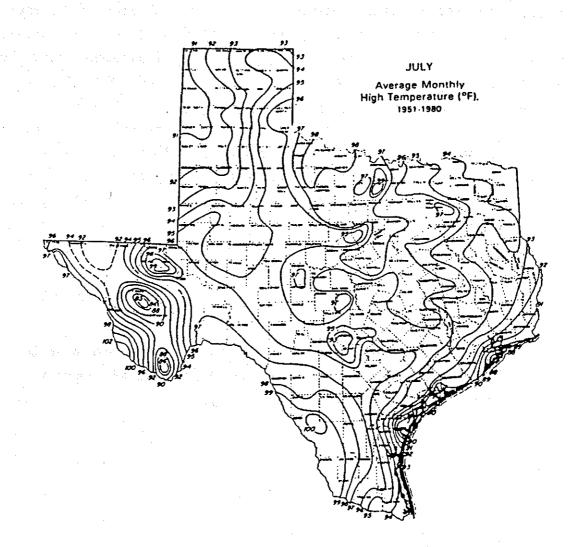
CLIMATIC REGIONS AND DATA COLLECTION

It is well established that the climate in Texas is quite changeable from day to day, from year to year, and from place to place. Texas was, therefore, been divided into 4 regions (Figure 4), each representing distinct climatic features (I-cold, and dry, II-moderate and wet, IIImoderate and dry, IV-hot and wet). The map of average monthly high temperature of July (Figure 5) was also used to help in establishing the regions.


In each region, one station which was able to provide sufficient climatic data records was chosen. One criterion used in choosing the station was that the maximum temperature difference between the average monthly high temperature at a location within a given region and the temperature of the representative station did not exceed station 5°F. However, some disagreements in low temperatures between points of location were ignored because rutting is much less significant at lower temperatures.

Thirty year climatic date (from 1955 to 1984) for each selected regional station (Amarillo, Dallas, Midland, and Austin) were obtained from the National Climatic Data Center in Asheville, North Carolina. However, only 180 days (May 1 through October 27) each year were considered in actual temperature calculations.

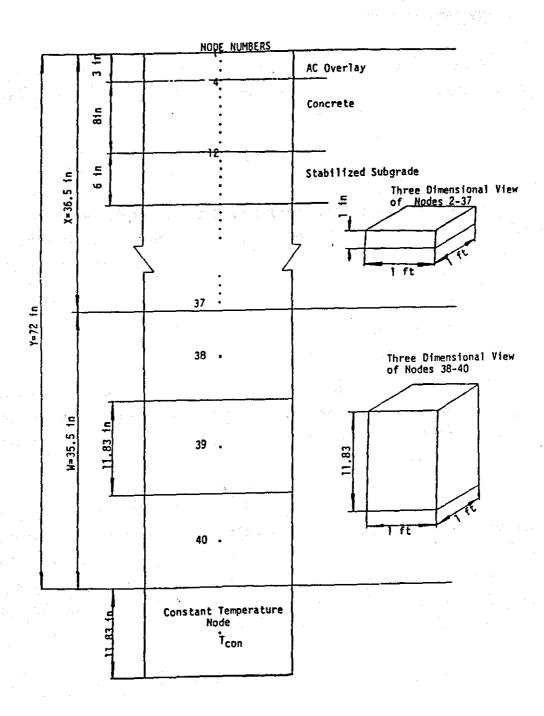
TEMPERATURE CALCULATIONS

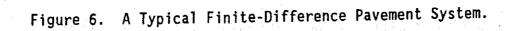

To determine the relationship between environmental conditions and the temperature profiles in pavement layers, a model developed by Dempsey ($\underline{9}$) was used. This model was originally developed to evaluate frost action in multilayered pavements. In this study, the model was used to calculate the temperature profiles in pavement layers.

Dempsey's heat transfer model is a one-dimensional, forward finitedifference model which provides a means for predicting temperatures in multilayered pavement systems. A flow diagram of the computer program and a more detailed description of the program can be found in Reference 9. The accuracy of the temperatures predicted by this model depend mainly on the quality of the input data, especially the environmental

. 1	and the second second	1 N N	1 . I	1						· ·	
IY	Austin	(95)	90 -	100 ⁰ F	(88)	•	900F	țn se	all	area)	
Ш-	Hidland	(95)	92 -	102 ⁰ F	. (83	•	92 ⁰ F	in sm	ыll	area)	
	Dallas				-		90 ⁰ F				
I	Amarillo	(93)	91 -	98~F							

Figure 4. Regional Map of Texas.




Figure 5. Average Monthly High Temperature of July.

data, and not the numerical method of solution. Based on many calculations $(\underline{9})$, it has been found that substantial variations in the thermal properties of the pavement materials do not cause large errors in the predicted temperatures compared to field measured data. The benefit of this conclusion is obvious. By running the program using a typical pavement structure and typical thermal properties of pavement materials, the results obtained can be applied to a wide range of pavement structures with different thermal properties.

The pavement system used in this analysis is shown in Figure 6. The required input data for the program are listed in Appendix A. The results of the program consists of the temperature profile of the 40 nodal points for each hour of each day considered. In this study, the temperature profiles within the asphalt overlays were the only concern. Therefore, the program was changed in the following two areas:

- 1. The subroutine used for the analysis of frost action was deleted, and
- 2. A new subroutine called STAT (Appendix B) was developed to perform primary data analysis on the results of temperature calculations in the asphalt overlay.

STATISTICAL ANALYSIS

PRIMARY DATA ANALYSIS

A vast amount of output results were generated from the temperature calculations. For example, the number of the calculated temperatures for a 5 inch asphalt overlay is:

$$(1 + 5_{sub-layers}) \times 180_{days} \times 30_{years} = 777,600$$
 (1)

To handle such a large volume of data is was necessary to use statistical analyses techniques. To reduce the variability and to improve the accuracy, the analysis procedure was therefore divided into two steps:

- 1. Primary data analysis to reduce the variance as well as the data size for further analysis.
- Statistical analysis to develop a temperature distribution model and a number of temperature profiles by the SAS program (<u>10</u>) which includes linear regression, mean analysis and frequency analysis.

The primary data analysis was done using STAT. In this subroutine, the variance was reduced by first calculating a weighted 5 day mean temperature and assigning this mean value to the temperature in the middle of the five day period. This was done for every day of a year, every hour of a day, for 30 years, and each nodal point in the asphalt overlays. The formula reads as follows:

$$I_{i,j,k,m} = \frac{T_{i,j-2,k,m} + T_{i,j-1,k,m} + T_{i,j,k,m} + T_{i,j+1,k,m} + T_{i,j+2,k,m}}{5}$$
(2)

where:

T - Temperature in the asphalt layer,

 $i - Time of the day (i = 1, 2, \dots 24 hours),$

- j Day of the year (j = 3, 4, ... 178),
- K Nodal point in the asphalt overlay (k = 1, 2, \cdots n+1, η is the total number of sub-layers) and

$$m - Year (m = 1, 2 - - - 30 years).$$

Equation 2 is based on the previously discussed assumption that the temperature in an asphalt layer is a variable and depends on the temperatures of the days surrounding it.

In the next step the 180 warmer days were divided into 36 5-day periods. An arithmetic average of temperature for the 5 day periods was calculated for each year of the 30 year period, each hour of the day, and each nodal point in the asphalt overlays. The applicable formulas read as follows:

$$T_{i,1,k,m} = \frac{T_{i,j,k,m} + T_{i,j+1,k,m} + T_{i,j-2,k,m} + T_{i,j+3,k,m} + T_{i,j+4,k,m}}{5}$$
(3)

where:

1 - Period (1 = 1, 2, ... 36) and 1 - integer $\frac{(j-1)}{5}$ + 1(j = 1, 2, ... 180).

Finally, an arithmetic average over 30 years was calculated and the temperatures at the center of each asphalt sub-layer were obtained by using linear interpolation between the two adjacent points in each sub-layer. In this way, the amount of data was reduced to n sub-layers $X = 36_{periods} \times 24_{hours}$ total data points. In other words, 864 temperature profiles were developed, each with n calculated temperatures. Also, the variability was substantially reduced.

STATISTICAL ANALYSIS

The mathematical model for temperature distribution within the asphalt pavement was obtained by SAS linear regression analysis (Appendix C). The regression model was divided into two parts: one was for day time; the other was for night time. The general forms of the models are shown as follows:

 $T = a_0 + a_1 x + a_2 y + a_3 z + a_4 y z + a_5 x^2 + a_6 y^2 + a_7 y^2 z + a_8 y^3$ (4)

for the day time temperature, where:

T - Temperature at the center of each sub-layer,

x - Period of the year $(x = 1, 2, \dots, 36)$,

y - Hour of the day (7 < y < 19),

n - Number of sublayers ($\eta = 2, 3, \dots 5$),

z - Sub-layer (z = 1, 2, $\cdots \eta$) and

 a_0 , a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 - Regression constrants

$$T = b_0 + b_2 x + b_2 y + b_3 z + b_4 x^2 + b_5 y^2 + b_6 y^3 + b_7 y^4.$$
 (5)

for the night time temperature, where:

T - Temperature at the center of each sub-layer,

x - Period of the year (x = 1, 2, ... 36),

y - Hour of the day (y < 7 or y > 19),

z - Sub-layer (z = 1, 2, $\dots \eta$),

n - Number of sublayers ($\eta = 2, 3, \dots 5$) and

 b_0 , b_1 , b_2 , b_3 , b_4 , b_5 , b_6 , b_7 - Regression constants.

The coefficients for each thickness of the asphalt layer (2, 3, 4, and 5 in.) and the associated R^2 values for each equation are listed in Table 1.

The temperature changes varying with the depth can be determined by differentiating equations 4 and 5 with respect to z:

- $\frac{\partial T}{\partial r} = a_3 + a_4 y \quad a_7 y^2$ for the day time and
- $\frac{\partial T}{\partial z} = b_3$

for the night time.

As can be seen, the temperature variation with depth is a parabolic function during the day time and a constant value during the night time. The positive values of b_3 (Table 1) indicate that the temperature increases with depth at a constant rate during the night time.

After the regression analysis, the 864 profiles were rearranged according to the temperatures at the center of the top sub-layer, and the time sequence was ignored based on the assumption that the asphalt mix stiffness is a function of temperature and loading frequency only (assumption 2). The rearranged profiles were then divided into 6 temperature ranges (Table 2). The mean temperature at the center of each sub-layer for each temperature range was calculated and the frequency of each temperature range was calculated. Finally, 6 seasonal profiles from the 6 temperature ranges were obtained from the output of the SAS program (Table 2). The six temperature profiles were used to represent the temperature variations in asphalt overlays for the whole 180 day period (May 1 through October 27).

RESULTS

Tables 2 through 5 summarize the SAS output for each asphalt overlay thickness (2, 3, 4, and 5 in.). Table 3 is a summary and example of some of the key data obtained in the SAS analysis for a 3 in. overlay. The first column lists the profile number of each seasonal profile arranged

2 in.	3 in.	4 in.	5 in.
10.86578376			
10100010010	-7.37747191	-5.29491432	-3.9887809
2.72235732	2.68441704	2.64857345	2.6154299
11.67046823	10.46812755	9.68542806	9.1796748
18.99788240	19.32725122	19.06918040	18.3899856
-4.42976066	-4.26659265	-4.03574420	-3.7632139
-0.08258815	-0.08113541	-0.07976100	-0.0784871
0.12485806	0.21952908	0.27372750	0.2987754
0.19240163	0.17992750	0.16595360	0.1513666
-0.02729960	-0.02926142	-0.03002847	-0.0299072
0.993	0.992	0.991	0.98
62.41359215	62.66070339	62.93120679	63.2405756
2.19724661	2.22547650	2.25007514	2.2703579
-4.70931105	-4.51637361	-4.29690296	-4.0538772
2.60459596	2.41021465	2.19595202	1.9722702
-0.06465221	-0.06541879	-0.06607928	-0.0666105
0.89622492	0.80313852	0.72095031	0.6461832
-0.04680822	-0.03955661	-0.03355423	-0.0284490
0.00072631	0.00057167	0.00044851	0.00034834
0.985	0.983	0.982	0.980
	2.19724661 -4.70931105 2.60459596 -0.06465221 0.89622492 -0.04680822 0.00072631	2.197246612.22547650-4.70931105-4.516373612.604595962.41021465-0.06465221-0.065418790.896224920.80313852-0.04680822-0.039556610.000726310.00057167	2.197246612.225476502.25007514-4.70931105-4.51637361-4.296902962.604595962.410214652.19595202-0.06465221-0.06541879-0.066079280.896224920.803138520.72095031-0.04680822-0.03955661-0.033554230.000726310.000571670.00044851

Table 1. Coefficient and R^2 Values (Dallas Area).

Profile No.	Temp. (°F)	Sub-laver	% Time	
		1	2	FINE
1	< 75	68	70	25.69
2	75-85	79	81	25.69
3	85-95	90	89	14.93
4	95-105	100	97	14.47
5	105-115	110	105	12.38
6	115-125	118	112	6.84
		T T	OTAL	100

Table 2. Temperature Distribution of 2 in. Asphalt Overlay (Dallas Area).

Table 3. Temperature Distribution of 3 in. Asphalt Overlay (Dallas Area).

Profile	Temp.	<u>Sub-la</u>	Sub-layer Temp. (°F)			
No.	(°F)	1	2	3	Time	
1	< 75	68	70	72	25.69	
2	75-85	79	81	82	25.69	
3	85-95	90	89	88	14.93	
4	95-105	100	97	94	14.70	
5	105-115	110	105	101	12.15	
6	115-125	118	112	107	6.84	
to Providence			TOTA		100	

Profile	Temp.	<u>Sub-</u>	-layer	Temp.	(°F)	%
No.	(°F)	1	2	3	4	Time
1	< 75	68	70	72	73	25.58
2	75-85	79	81	82	84	25.58
3	85-95	90	89	88	87	15.05
4	95-105	100	97	94	91	14.58
5	105-115	110	105	101	97	12.15
6	115-125	118	112	107	103	6.83
			-	FOTAL		100

Table 4. Temperature Distribution of 4 in. Asphalt Overlay (Dallas Area).

Table 5. Temperature Distribution of 5 in. Asphalt Overlay (Dallas Area).

Profile	Temp. (°F)	<u>Sub-layer Temp. (°F)</u>				%	
No.		1	2	. 3	4	5	Time
1	< 75	68	70	72	74	75	25.58
2	75-85	79	81	82	84	85	25.58
3	85-95	90	89	88	87	86	15.05
4	95-105	100	97	94	91	88	14.58
5 age 14	105-115	110	105	101	97	94	12.15
6	115-125	118	112	107	103	99	6.83
				T	OTAL	·	100

according to the temperature range listed in column 2 which is based on the temperatures at the center of the top sub-layer. Columns 3 through 5 list the mean temperatures of the sub-layers for each temperature range. Column 6 gives the percentage time for each temperature range. For example, Profile No. 1 occurs 25.69 percent of the time in the period of analysis or, in other words, 25.69 percent of the time the temperature at the center of the top sub-layer is lower than 75°F. During this period the temperature within the 1-inch sublayers are 68, 70 and 72, °F respectively. A complete output of the SAS program for 3 in. asphalt layers is listed in Appendix C. The data listed in Table 3 have been obtained from Appendix C.

COMPARISONS OF 4 DIFFERENT REGIONS

The same calculations were also done for the other 3 regions: Austin (Tables 6 to 10), Midland (Tables 11 to 15), and Amarillo (Tables 16 to 20). The differences of temperature distributions can be seen by making comparisons among the distributions for the different regions.

The temperature distribution of 3 inch asphalt layer in the Dallas area was chosen as a basic distribution to compare with other areas. The comparisons were based on four factors: the maximum differences of the surface temperatures, the minimum differences of the surface temperatures, the average differences of the surface temperatures, the standard derivations of these differences. All calculations of these differences were based on absolute values at the 864 ($24_{hours} \times 36_{periods}$) discrete data points of the two temperature distributions. The results of these comparisons are listed in Table 21 and the following conclusions can be drawn from these results:

		· · · · ·					
	Coet	Coefficients in Regression Equations					
ai	2 in.	3 in.	4 in.	5 in.			
a _o	-11.16129250	-7.31370860	-5.85662045	-4.37353627			
a ₁	2.53540650	2.49142392	2.45160263	2.41447206			
a ₂	11.95612570	10.70758599	10.04691194	9.47960491			
a ₃	19.72385503	20.22308858	19.72192219	18.87160892			
a4	-4.53785909	-4.40943536	-4.13289892	-3.83117453			
a _s	-0.07552952	-0.0739145	-0.07250842	-0.07118501			
a ₆	0.10561130	0.20071134	0.25049733	0.28226202			
a,	0.19592768	0.18487506	0.16911556	0.15346072			
a _s	-0.02689337	-0.02879659	-0.02957107	-0.02964268			
R ₂	0.993	0.992	0.990	0.986			
b _o	65.00155559	65.08225109	65.19363065	65.40996014			
bı	1.86268427	1.91188544	1.94425980	1.97347444			
b ₂	-4.4544547	-4.25784016	-4.07334665	-3.87019658			
b ₃	2.60962121	2.42796717	2.18803030	1.94981818			
b ₄	-0.05440791	-0.05567339	-0.05650277	-0.05724273			
b ₅	0.83154403	0.74257733	0.67348421	0.60935132			
b ₆	-0.04270870	-0.03585179	-0.03081410	-0.02638700			
b. ₇	0.00064977	0.00050423	0.00040100	0.00031343			
R ²	0.979	0.977	0.976	0.974			
		and the second					

Table 6. Coefficient and R^2 Values (Austin Area).

Profile	е	Temp.	<u>Sub-la</u>	<u>Sub-layer Temp. (°F)</u>			
No.		(°F)	1		2	Time	
1	· · ·	< 75	69		71	22.69	
2	t e pet	75-85	79		81	27.43	
3		85-95	90	· .	89	16.44	
4	:	95-105	100		97	13.66	
5	·	105-115	110		105	12.96	
6		115-125	118	8 - 1 -	112	6.83	
				TOT	AL	100	

Table 7. Temperature Distribution of 2 in. Asphalt Overlay (Austin Area).

Table 8. Temperature Distribution of 3 in. Asphalt Overlay (Austin Area).

Profile No.	Temp. (°F)	<u>Sub-la</u> 1	<u>iyer Te</u> 2	mp. (°F) 3	% Time
1	< 75	69	71	73	22.69
2	75-85	79	81	83	27.20
3	85-95	90	89	88	16.67
4	95-105	100	97	94 .	13.77
5	105-115	110	105	101	12.96
6	115-125	117	112	106	6.71
			TOTA	L	100

Profil	le	Temp.	<u>Sub-</u>	layer	Temp.	(°F)	%
No.		(°F)	1	2	3	4	Time
1	.*	< 75	69	71	73	75	22.69
2		75-85	79	81	83	84	27.43
3	- 1	85-95	90	89	88	88	16.44
4		95-105	101	97	94	91	13.66
5		105-115	110	105	101	97	12.96
6	5 A - 1	115-125	118	112	107	102	6.83
	· · · ·			٦	FOTAL		100

Table 9. Temperature Distribution of 4 in. Asphalt Overlay (Austin Area).

Table 10. Temperature Distribution of 5 in. Asphalt Overlay (Austin Area).

Profile	Temp.		Sub-1	ayer T	%		
No.	(°F)	1	2	3	4	5	Time
1	< 75	69	71	73	75	76	22.92
2	75-85	79	81	83	84	85	27.08
3	85-95	90	89	88	88	87	16.55
4	95-105	101	97	94	91	88	13.66
5	105-115	110	105	101	97	94	12.73
6	115-125	118	112	107	102	98	7.06
				T	DTAL		100

	Table 1	11.	Coefficient	and	R ²	Values	(Midland	Area)	•
--	---------	-----	-------------	-----	----------------	--------	----------	-------	---

	Coe	fficients in Regr	ession Equations	·
a _i	2 in.	3 in.	4 in.	5 in.
a _o	-15.94867203	-12.72391387	-11.30128473	-10.32068399
a_1	2.20927914	2.18069850	2.16437505	2.15610972
a ₂	12.67221863	11.51273616	10.78493523	10.23111181
a ₃	21.83544456	22.00686994	21.50330905	20.57014513
a ₄	-5.01099983	-4.79538267	-4.49985007	-4.16732488
a ₅	-0.07162787	-0.07059277	-0.06964514	-0.06856288
a ₆	0.13927009	0.23230185	0.28533553	0.31416558
a,	0.21647325	0.20134491	0.18434904	0.16709370
a _s	-0.02984335	-0.03177170	-0.03253488	-0.03245459
R ₂	0.995	0.994	0.991	0.988
b _o	60.89035084	61.57073499	61.95978976	62.21687884
b1	1.96859912	1.96648326	1.97667169	1.99805429
b ₂	-5.1555700	-4.93245102	-4.70293250	-4.45021087
b3	3.06512626	2.81965909	2.55495960	2.28558586
b4	-0.05970345	-0.06001458	-0.06036876	-0.06066460
b ₅	0.98573435	0.88308960	0.79687068	0.71768992
b ₆	-0.05167477	-0.04379128	-0.03750947	-0.03207345
b ₇	0.00080561	0.00063898	0.00051036	0.00040331
R ²	0.982	0.979	0.978	0.977
	· · · · · · · · · · · · · · · · · · ·			·

Profile No.	Temp. (°F)	<u>Sub-laye</u> 1	<u>er Temp. (°F</u> 2) % Time
1	< 75	67	70	36.23
2	75-85	80	81	18.98
3	85-95	90	88	12.85
4	95-105	100	96	12.73
- 5	105-115	110	105	15.16
6	115-125	117	200 j. 111	4.05
			TOTAL	100

Table 12. Temperature Distribution of 2 in. Asphalt Overlay (Midland Area).

Table 13. Temperature Distribution of 3 in. Asphalt Overlay (Midland Area).

Profile No.	Temp. (°F)	<u>Sub-la</u> 1	<u>yer Te</u> 2	<u>np. (°F)</u> 3	% Time
1	< 75	67	70	72	36.46
2	75-85	80	81	82	18.75
3	85-95	90	88	87	12.85
4	95-105	100	96	92	12.62
5	105-115	110	105	100	14.70
6	115-125	117	111	105	4.63
		••• • •	TOTA		100

			•			
Profile No.	Temp. (°F)	<u>Sub</u> 1	<u>-laver</u> 2	<u>Temp.</u> 3	<u>(*</u> +) 4	% Time
··· 1	< 75	67	70	72	74	36.46
2	75-85	80	81	82	83	18.75
3	85-95	90	88	87	86	12.73
4	95-105	100	96	92	89	12.73
5	105-115	110	105	100	96	14.47
6	115-125	117	111	105	100	4.86
				TOTAL		100

Table 14. Temperature Distribution of 4 in. Asphalt Overlay (Midland Area).

Table 15. Temperature Distribution of 5 in. Asphalt Overlay (Midland Area).

Profile	Temp.		Sub-1	ayer T	emp. (°	'F)	%			
No.	(°F)	1	2	3	4	5	Time			
1	< 75	67	70	72	74	75	36.00			
м _{ан} к 2 г. 1	75-85	80	81	82	83	84	18.98			
aa a 3	85-95	90	88	87	86	84	12.96			
4	95-105	100	96	93	90	. 87	12.73			
5 S	105-115	110	105	100	96	92	14.58			
6	115-125	117	111	105	100	96	4.75			
				T(DTAL		100			

	Coef	ficients in Regr	ession Equations	
a _i	2 in.	3 in.	4 in.	5 in.
ao	-16.75236660	-14.32946948	-13.69368501	-12.72169418
a ₁	2.61600799	2.59557063	2.56177830	2.53758598
a ₂	11.70466087	10.62325889	10.07906508	9.58525011
a ₃	20.55916583	20.85583763	20.25502520	19.40540579
a ₄	-4.72092768	-4.54275912	-4.23776898	-3.92849525
a ₅	-0.08231950	-0.08125296	-0.08010476	-0.07900827
a ₆	0.15097142	0.23788303	0.28093597	0.30710503
a ₇	0.20387890	0.19061556	0.17352672	0.15742044
a ₈	-0.02856312	-0.03035507	-0.03099853	-0.03091843
R ₂	0.992	0.992	0.990	0.986
b _o	54.71594696	54.85746040	54.97881233	55.46384511
b ₁	2.33845805	2.34995979	2.36017662	2.35999902
b ₂	-5.22492078	-5.00181794	-4.79006700	-4.52094982
b₃	3.02542929	2.81787879	2.55486364	2.29544949
b4	-0.06950748	-0.07011246	-0.07056120	-0.07062619
b ₅	1.01676951	0.91116794	0.82887409	0.74416558
b ₆	-0.05416591	-0.04599359	-0.03995853	-0.03411721
b,	0.00086055	0.00068700	0.00056310	0.00044757
R ²	0.985	0.984	0.982	0.980

Table 16. Coefficient and R^2 Values (Amarillo Area).

Profile No.	Temp. (°F)	<u>Sub-layer</u> 1	% Time	
1	< 75	65	67	44.10
2	75-85	80	80	16.90
3	85-95	90	87	13.43
4	95-105	100	96	13.66
5	105-115	110	105	11.92
		Ţ	OTAL	100

Table 17. Temperature Distribution of 2 in. Asphalt Overlay (Amarillo Area) .

Table 18. Temperature Distribution of 3 in. Asphalt Overlay (Amarillo Area).

Profile	Temp.	<u>Sub-la</u>	<u>Sub-layer Temp. (°F)</u>			
No.	(°F)	1	2	3	Time	
1	< 75	65	66	69	44.79	
2	75-85	80	80	80	16.90	
3	85-95	90	87	85	13.08	
4	95-105	100	95	91	13.66	
5	105-115	110	104	99	11.57	
			TOTAL	• •	100	

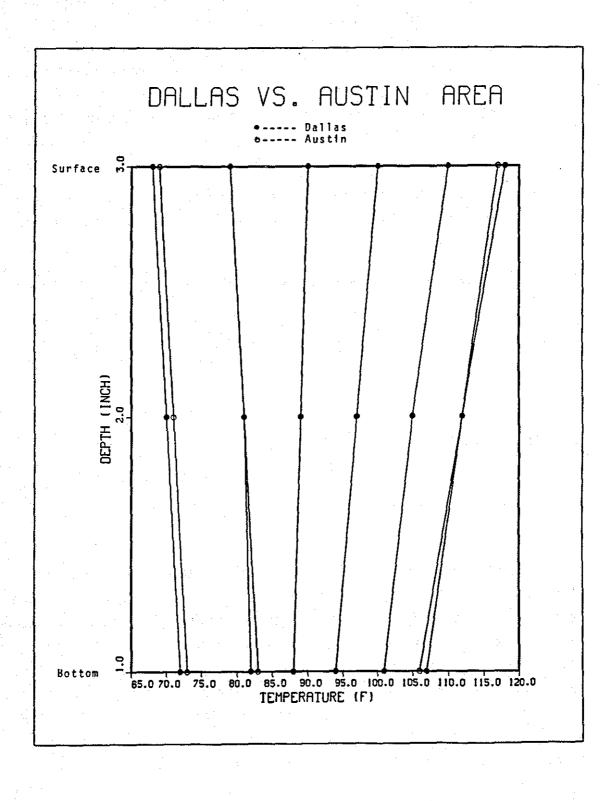
	Profile No.	Temp. (°F)	Sub 1	-laver 2	Temp. 3	<u>(°F)</u> 4	% Time
	1	< 75	64	67	69	71	45.14
	2	75-85	80	80	80	81	16.78
	3	85-95	90	87	84	82	12.73
	4	95-105	100	95	91	88	13.66
	5	105-115	110	104	99	95	11.69
•		·		Г	OTAL		100

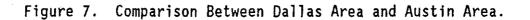
Table 19. Temperature Distribution of 4 in. Asphalt Overlay (Amarillo Area).

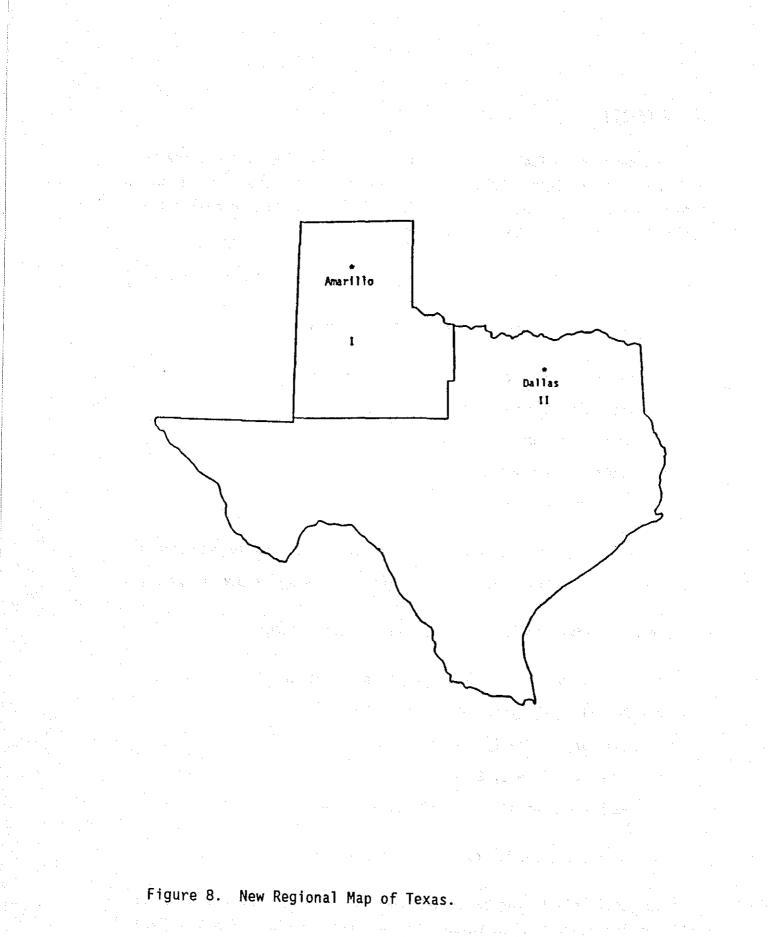
Table 20. Temperature Distribution of 5 in. Asphalt Overlay (Amarillo Area).

Profile	Temp.	•	<u>Sub-layer Temp. (°F)</u>					
No.	(°F)	1	2	3	4	5	Time	
1	< 75	64	67	69	70	72	45.25	
2	75-85	80	80	80	80	80	16.67	
3	85-95	90	87	84	82	80	12.62	
4	95-105	100	95	91	88	85	13.77	
5	105-115	110	104	99	95	91	11.69	
							• • •	

TOTAL


- There is little difference among temperature distributions the Dallas, Midland, and Austin areas. In other words, one temperature distribution of one area (Dallas area) for one asphalt structure can be used to represent the temperature distributions of the two other areas for the same asphalt structures. Figure 7, which is based on Table 3 and Table 8, presents the comparisons of the temperature distributions between the Dallas area and the Austin area.
- 2. Significant differences of temperature distributions were found between the Amarillo area and the one of other three areas.


Table 21. Comparisons of Temperature Distributions with Dallas Are	Table 21.	Comparisons	of	Temperature	Distributions	with	Dallas	Are
--	-----------	-------------	----	-------------	---------------	------	--------	-----


Areas	Mean Value	Standard Deviation	Maximum. Value	Minimum Value
		`	•	
Austin	0.97	1.00	4.40	0.00
Midland	2.48	1.20	4.10	0.00
Amarillo	6.86	4.04	9.60	4.50

Based on this analysis, a new regional map was drawn by simply dividing Texas into 2 regions: the northern region (I) and the southern region (II) (Figure 8). During the warmer seasons (from May 1 to October 27), regression equations (Table 18), which are based on the historic climatic data of the Amarillo area (Region I), can be used to describe the temperature variations within asphalt layers. Regression equations (Table 1), which are based on the historic climatic data of the Dallas area (Region II), can be used to describe the temperature variations within asphalt layers for the rest of Texas.

31.

WINTER PERIOD

The same analytical procedure can be also applied to the winter period (185 days, from October 28 to April 30). The general forms of the temperature distributions obtained by the linear regression analysis for the winter period are shown as follows:

$$f = a_0, a_1x + a_2y, a_3z, a_4x^2 + a_5yz + a_6y^2 + a_7y^2z + a_8x^2z + a_9x^3 + a_{10}y^3$$
(6)

for the day time temperature of winter period, where:

T - Temperature at the center of each sub-layer,

x - Period of the year $(x = 1, 2, \dots, 36)$,

y - Hour of the day (7 < y < 19),

 η - Number of sublayers (η = 2, 3,...5),

z - Sub-layer (z = 1, 2, $\cdots \eta$) and

 a_0 , a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_9 , a_{10} , - Regression constrants $T = b_0 + b_1 x + b_2 y + b_3 z + b_4 x^2 + b_5 y^2 + b_6 x^3 + b_7 y^3 + b_7 x^4 + b_8 y^5$. (7)

for the night time temperature of winter period, where:

T - Temperature at the center of each sub-layer,

x - Period of the year $(x = 1, 2, \dots, 36)$,

y - Hour of the day (y < 7 or y > 19),

z - Sub-layer (z = 1, 2, $\dots \eta$),

 η - Number of sublayers (η = 2, 3,...5) and

 b_0 , b_1 , b_2 , b_3 , b_4 , b_5 , b_6 , b_7 , b_8 - Regression constants.

The coefficients for each thickness of asphalt layer (2, 3, 4, and 5 in.) and the associated R^2 values for each equation are listed in Table 22.

	Coel	fficients in Regre	ession Equations	
a	2 in.	3 in.	4 in.	5 in.
a _o	-9.40151315	-1.57961832	2.92859041	5.41475832
a ₁	-3.95307726	-3.84059766	-3.73613798	-3.63889402
a ₂	10.92359260	8.58483015	7.19319408	6.41461337
a ₃	20.28828729	20.18800468	19.51818704	18.46738578
a4	0.17895451	0.17289903	0.16730848	0.16209765
a _s	-4.12527662	-3.94778249	-3.70200950	-3.41475469
a ₆	0.05788937	0.24229388	0.34237769	0.38628314
a,	0.17377163	0.16235548	0.14918622	0.13515834
a _s	-0.00123485	-0.00119229	-0.00114060	-0.00108475
a _s	-0.02246086	-0.02677807	-0.02875480	-0.02915095
a ₁₀	-0.00171006	-0.00161885	-0.00153589	-0.00145933
R_2	0.972	0.972	0.971	0.969
Ь ₀	56.33204934	56.74866303	57.06077229	57.52514408
b ₁	-0.78783658	-0.80128838	-0.80053192	0.81930226
b ₂	-2.99021058	-2.98002570	-2.86903999	-2.80873176
b ₃	2.15513514	1.99555283	1.82776658	1.66783047
b ₄	-0.11930756	-0.11917448	-0.12053576	-0.11939222
b ₅	0.50043323	0.47337867	0.43645740	0.41036317
b ₆	-0.01956822	-0.01785313	-0.01588947	-0.01447468
b,	0.00840510	0.00845138	0.00855027	0.00854417
b ₈	0.000066	0.000055	0.0000045	0.0000037
b ₉	-0.00012004	-0.0001214	-0.00012265	-0.00012290
R ²	0.971	0.972	0.972	0.973

Table 22. Coefficient and R^2 Values (Dallas Area, Winter Period).

The results from the statistical analysis for the winter period of the Dallas area are listed in Tables 22 to 26 for the different thicknesses of asphalt layers. The percentage of time that the surface temperatures are higher than 75°F is less than 15% during the winter period and it is about only 1.5% of time that the surface temperature is over 95°F (Table 23). This verifies the assumption stated previously that winter temperatures are not conducive to permanent deformation.

Profile	Temp.	<u>Sub-layer</u>	%	
No.	(°F)	1	2	Time
1	< 45	41	43	18.69
2	45-55	50	51	26.80
3	55-65	60	60	25.00
4	65-75	70	68	14.86
5	75-85	80	76	8.56
6	85-95	90	85	4.62
7	> 95	97	92	1.46
		т	DTAL	100

Table 23. Winter Temperature Distribution of 2 in. Asphalt Overlay (Dallas Area).

Table 24. Winter Temperature Distribution of 3 in. Asphalt Overlay (Dallas Area).

Profile No.	Temp. (°F)	<u>Sub-la</u> 1	<u>yer Tem</u> 2	<u>np. (°F)</u> 3	% Time
1	< 45	41	43	44	18.69
2	45-55	50	-51	53	26.80
3	55-65	60	60	51	25.00
4	65-75	70	68	66	14.86
5	75-85	80	77	74	8.67
6	85-95	90	85	81	4.50
7	> 95	97	92	87	1.46
		• • •	TOTAL		100

Profile No.	Temp. (°F)	<u>S</u>	<u>ub-1</u> 1	aver 2	Temp. 3	<u>(°F)</u> 4	% Time
1	< 45	4	1	43	44	45	18.58
2	45-55	5	0	51	53	54	26.91
3	55-65	6	0	60	60	60	25.00
4	65-75	7	0	68	66	64	14.86
5	75-85	8	0	77	74	71	8.67
6	85-95	9	0	85	81	78	4.62
7	> 95	9	7	92	88	84	1.35
· ·				Т	OTAL		100

Table 25. Winter Temperature Distribution of 4 in. Asphalt Overlay (Dallas Area).

Table 26. Winter Temperature Distribution of 5 in. Asphalt Overlay (Dallas Area).

Profile	Temp.		%				
No.	(°F)	1	2	3	<u>mp. (°</u> 4	5	Time
1	< 45	41	43	44	46	47	18.58
2	45-55	50	51	53	54	55	26.91
3	55-65	60	60	60	60	59	25.00
4	65-75	70	68	66	64	63	14.86
5	75-85	80	76	73	71	69	8.67
6	85-95	90	85	81	78	75	4.62
7	> 95	97	92	88	84	80	1.35
		• • •			TAL		100

COMPUTER MODEL

GENERAL

The computer model used in this study was the modified ILLIPAVE computer program. The current version of ILLIPAVE is a finite element computer program with the ability to incorporate linear and nonlinear characterization of materials; an interface relationship between the pavement layers; and predict rut depth, slope variance, fatigue cracking and present serviceability index with time. A finite element configuration representing the pavement cross section, load conditions and materials properties such as unit weight, Poision's ratio, earthpressure coefficient at rest, as well as a modulus for stress dependent materials are required input. Four alternative models are available for describing the resilient modulus for stress dependent granular and cohesive soil layers under repeated loads (11).

The method used by the program to represent permanent deformation characteristics of the asphalt material is based on three parameters ϵ_0 , B, and ρ . The parameters are developed by a curve fit that relates permanent strains to loading cycles using SAS nonlinear regression techniques (<u>10</u>). The data used for the nonlinear regression analysis can be obtained from creep or repeated load triaxial tests at different temperature levels. The curve describing this relationship is represented by

(8)

$$\epsilon_a = \epsilon_0 e^{(-p/N)\delta}$$

where:

 ϵ_{a} is a permanent strain, N is the number of load repetitions, $\frac{e_{0}}{-}$, ρ , and β are material parameters (<u>11</u>), and e_{r}

 $\epsilon_{\rm r}$ is the resilient strain imposed in the laboratory.

PERMANENT DEFORMATION PREDICTION

Permanent deformation (rut depth) in the wheel path of a flexible pavement is attributed to the accumulation of permanent strains produced by repetitive traffic loads. The model of permanent deformation is based on an evaluation of the vertical resilient strain in each layer by the finite element method and on the fractional increase of total strains for each material layers of the pavement as determined by the three material properties, ϵ_0 , ρ , and β . The finite element analysis is used to take both linear and nonlinear stress-strain behavior of the materials into account. This approach can be applied to not only a single axle load but also multiple axle loads on the surface. The mathematical derivation of the equations to predict permanent deformation for a single axle load as well as multiple axle loads are described elsewhere (<u>8</u>).

For a single axle load, the permanent deformation, δ_{a} , is given by:

(9)

$$\delta_{a} (N) = \sum_{i=1}^{\gamma} \frac{\epsilon_{o_{i}} - (\frac{\rho_{i}}{N})}{\epsilon_{r_{i}}} e \int_{d_{i-1}}^{d_{i}} \epsilon_{c}(z) dz$$

where:

n = number of pavement layers,

- ϵ_r = resilient strain imposed in the laboratory test to obtain the three parameters of the material in the ith layer,
- N = expected number of load cycles,

 $d_i = depth of ith layer, and$

 $\epsilon_{\rm c}$ = vertical resilient strain in the layer i from the finite element solution.

The term $\frac{\epsilon_1}{\epsilon_{r_1}} e^{-N}$ is defined as the fractional increase of total strains. The integral on the right side of Equation 9 can be solved numerically using the trapezoidal rule of integration for the given vertical strain of each element beneath the center of tire loads.

For a tandem axle load with single wheels, the equation of permanent deformation is expressed as:

$$\delta_{a}(N) = \sum_{i=1}^{\eta} \frac{\epsilon_{o_{i}}}{\epsilon_{r_{i}}} = \left(\frac{\rho_{i}}{N}\right)^{\beta_{i}} \int_{d_{i-1}}^{d_{i}} \left(1 + \frac{\Delta\sigma(z)}{\sigma_{max}(z)}\right) \epsilon_{c}(z) dz \quad (10)$$

The term $\Delta\sigma$ is the difference between σ_{\max} and $\sigma_{\min} \cdot \sigma_{\max}$ is determined by super position of the vertical stress under a single wheel plus the overlay vertical stress at a distance corresponding to the tandem axle spacing. Since the distribution of the vertical stresses is assumed to be symmetric and the interaction effect of the dual tires is ignored, σ_{\min} is simply twice the vertical stresses at half the tandem spacing. The individual values of σ_{\max} , σ_{\min} , and ϵ_c vary with the depth of the pavement and the size of tire loads. Thus, the estimate of total permanent deformation at the surface can be calculated numerically layer by layer from Equation 10.

Similar to the case of the dual load, Equation 10 can be extended for other multiple axle configurations and may be expressed as:

$$\delta_{a} (N) = \sum_{j=1}^{\gamma} \frac{\epsilon_{o_{j}}}{\epsilon_{r_{j}}} = 0$$

$$\delta_{a} (N) = \sum_{j=1}^{\gamma} \frac{-1}{\epsilon_{r_{j}}} = 0$$

$$\int_{d_{i-1}}^{d_{i}} \frac{d_{i}}{d_{i-1}} \frac{\Delta \sigma_{j}}{\sigma_{max}} + \epsilon_{c}(z) dz \quad (11)$$

where:

k = number of axles in each axle group, and

 $\Delta \sigma_{j}$ = the stress difference between the jth and (j + 1)th axle group.

PREDICTIVE EQUATIONS FOR $\epsilon_{1}/\epsilon_{1}$, ρ , and β

As noted previously, the values of ϵ_o/ϵ_r , ρ , and B are material constants derived from creep or repeated load testing. To obtained appropriate values of ϵ_o/ϵ_r , ρ , and B for the material of each pavement component, it is necessary to determine how these three parameters are

affected by the stress state, density, moisture content, asphalt content, temperature and other material characteristics. The effects of these factors are important in calculating permanent deformation of the pavement layers because the laboratory test conditions are significantly different from the actual field conditions. The test conditions affect the relationship between the permanent strain and the magnitude of the calculated permanent deformation. A preliminary regression analysis of ϵ_o/ϵ_r , ρ , and β in terms of the available variables was performed for different types of materials and the most reliable equations relating the three parameters to mixture parameters (based on the highest R² and lowest standard error) were determined using multiple regression analysis. The regression equations used for asphalt concrete are discussed below and the equations for other materials can be found from Reference 11.

A preliminary analysis shows that ϵ_o/ϵ_r , ρ , and B of asphalt concrete and most sensitive to resilient modulus and deviator stress, but the parameters are also sensitive to asphalt content and temperature. Because of this, several forms of equations including the more sensitive variables were considered in the multiple regression analysis of each parameter in terms of asphalt content, temperature, deviator stress, and resilient modulus. The useful equations are:

log (
$$\frac{\epsilon_o}{\epsilon_r}$$
) = -5.04349 + 0.01812.A_c + 0.011045.A_c² + 0.01127T

 $-0.203249 \log \sigma_{\rm d} + 1.12228 \log E_{\rm T}$ (12)

 $R^2 = 0.44$

 $\log \rho = 8.105675 - 4.241965A_c + 0.54159A_c^2 + 0.03865T$

$$-0.014874\sigma_{\rm d} + 0.000005E_{\rm r}$$
 (13)

 $R^2 = 0.62$

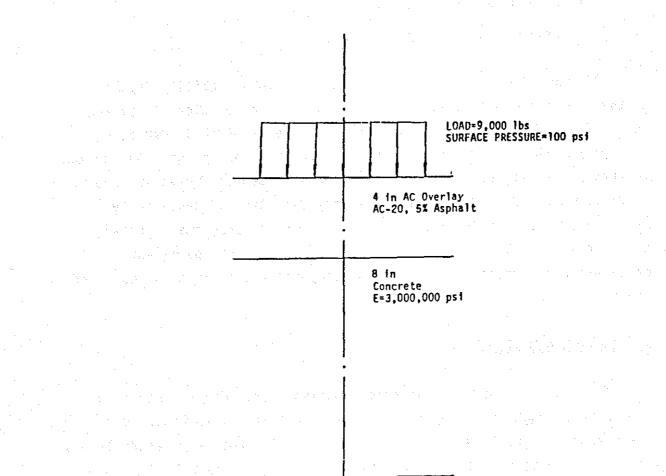
log B = -2.51475 + 0.60816A_c - 0.05282A_c² - 0.00214T
+0.16597 log
$$\sigma_d$$
 - 0.0000002E_T (14)
R² = 0.43

where

A_c = asphalt content, % ;

T = temperature, °F;

 $\sigma_{\rm d}$ = deviator stress, psi, and


 E_{T} = resilient modulus, psi.

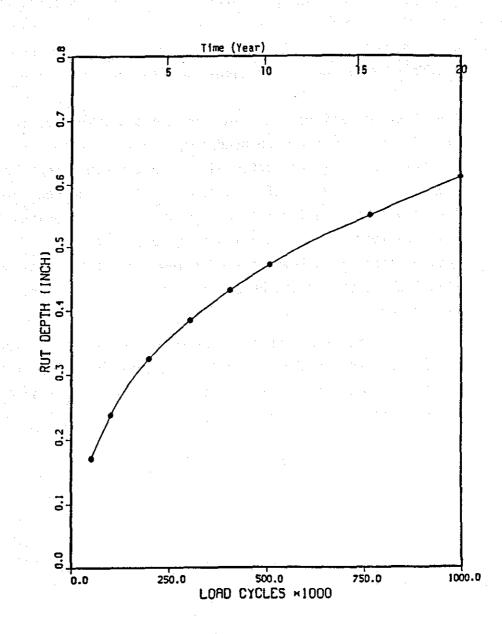
Although the equations above do not explain variability from a statistical viewpoint, they are indicative of the relationship between the variables and give an estimate of the effects of these variables. It is apparent that other variables related to the type, shape, and surface texture of the aggregate must be included in order to arrive at more accurate equations. Unfortunately, these data are not customarily measured or recorded in the repeated load testing programs reported in the literature. The equations show, as expected, that permanent deformation increases with increasing temperature, deviator stress, and asphalt content.

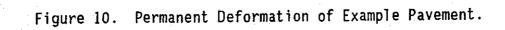
APPLICATION AND RESULTS

The results from the statistical analysis provided the required temperature range for creep or repeated load triaxial testing. Within that range, several tests were performed at different temperature levels in order to determine the parameters ϵ_0 , β , and ρ . The values of the three parameters between the prescribed temperature intervals were obtained by interpolations between two adjacent points. The program can handle up to 12 different seasonal profiles and 10 sub-layers for different pavement structures.

A sample calculation was performed using the modified ILLIPAVE program. The structure of the pavement and the traffic loading is shown in Figure 9. The traffic was assumed to be one million standard passes over a 20 year period based or an average daily traffic (ADT) of 140. Resilient moduli were obtained from the temperature vs. modulus curve, and the associated temperature at different depths were determined from the profiles obtained from the statistical analysis in Table 4. The

Subgrade E=6,000 ps1


Figure 9. Pavement Structure Used in Example Analysis.


values for ϵ_0 , β , and ρ were generated from equations 12, 13 and 14 using typical. The results are shown in Figure 10.

After a large number of sample runs, it was determined that the model reasonably represents the permanent deformation in asphalt layers when the air temperature is below 80°F and that the model under-estimates the rutting depth when the air temperature is over 80°F. Two possible reasons for under-estimation at the higher air temperatures might be:

- 1. The three parameters obtained from creep or repeated load triaxial test, which were used to represent the permanent deformation of asphalt materials, do not account for the lateral plastic deformation. In other words, no confined stain boundary condition is imposed in most creep or repeated load triaxial tests. The lateral plastic deformation is insignificant when temperature is low and the material behaves elastically; but it can be significantly increased when the temperature increases.
- In the modified ILLIPAVE computer model, only the vertical stress is used to calculate vertical permanent deformation. No vertical permanent deformation caused by lateral plastic movement is accounted for.

AC-20 5% ASPHALT 4 IN. AC

TRAFFIC CONSIDERATIONS

Climate and traffic are the two main external factors that influence the accumulation of rutting depth for asphalt concrete pavements. Under the same climatic conditions, different traffic patterns with the same traffic volume (ADT) can result in different rutting depths for an asphalt pavement structure. It is therefore important to combine the effect of traffic distribution with temperature distribution. Traffic and temperature are two independent variables. As illustrated in the previous chapters, the temperature distributions in asphalt concrete layers vary with different locations and different pavement structures such as the thickness of the asphalt layers. Traffic distributions vary with the types of roads built for different transportation purposes. The only link between the two is the time history which they both occupy. If distribution functions, containing the variables with respect to time only, can be developed both for temperature and traffic, the necessary relationship between temperature and traffic combining their effect on rutting can then be determined.

Equations 4 and 5 developed by the regression analysis are the temperature distribution functions of the pavement structures with asphalt overlays on the top of concrete pavements. The temperature distributions at the center of the top sub-layers (0.5 in. below the surface) can be obtained by setting z equal to 1. These functions contain the variables with respect to time only. The traffic distribution functions can be obtained by collecting traffic data and plotting the relative frequency histogram (Figure 11), or by assuming traffic density functions (Figure 12). The area of all rectangles in the frequency histogram equals to 1. If a continuous curve connects all the middle points at the top of each rectangle bar, the relative frequency histogram is equal to the traffic density function.

The relationship between the temperature and traffic distributions can be found using the temperature distributions at the top sub-layers and the traffic density functions. The same temperature ranges (Table 3) are used to group the whole traffic volume into the six categories by mapping each time increment (1 hour period), from which traffic volume is entered into the category according to the temperature range, and by

ADT = 400

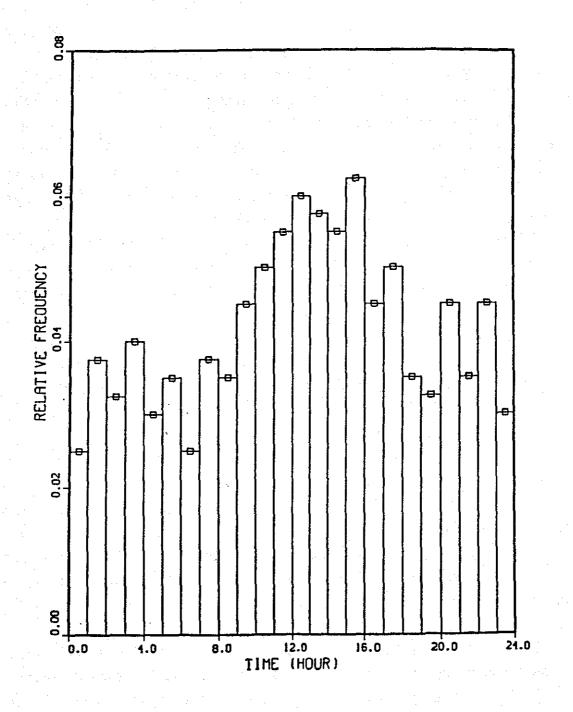


Figure 11. Relative Frequency Histogram.

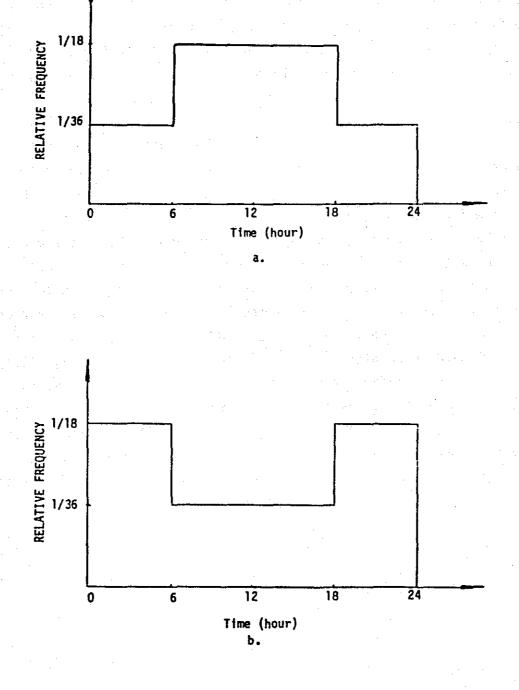


Figure 12. Traffic Density Functions.

superimposing with temperature for each category. The following two examples demonstrate the procedures used to calculate traffic distributions for given temperature distributions.

Figure 12a shows a traffic density function in which the traffic volume during the day time (6 A.M. to 6 P.M.) is twice as much as during the night time. The temperature regression model for the 3 in. asphalt overlay is used in the calculation and the results are listed in Table 27. The percentage traffic of Profile No. 1 shows that 18.24 percent of the traffic occurs during the 25.69 percent of the total time period in which the temperature at the center of the top sub-layer is lower than 75°F. Comparing with percent traffic and percent time in Table 27, as expected, fewer (Table 27, Profile Nos. 1 through 3) passes occur during low temperature periods and more passes (Profile No. 4 through 6) during high temperature periods.

The traffic density function shown in Figure 12b is the opposite traffic pattern to that shown in Figure 12a, where passes occur during the night time (low temperature periods) and fewer passes occur during the day time (high temperature periods). The same temperature regression model for 3 in. asphalt overlay was used and the results are listed in Table 28. The percentage traffic of Profile No. 1 tells that 32.2 percent of the traffic occurs during the 25.69 percent of the total time period in which the temperature at the top sub-layer is lower than 75°F. Comparing with percent traffic and percent time in Table 28, as expected, more traffic (Table 28, Profile Nos. 1 through 3) passes through over low temperature periods and less traffic (Profile No. 4 through 6) passes through over high temperature periods.

Profile	Temp.	Sub-la	%	%		
No.	(°F)	1	2	3	Time	Traffic
1	< 75	68	70	72	25.69	18.24
2	75-85	79	81	82	25.69	19.97
3	85-95	90	89	88	14.93	18.70
· · · · · ·	95-105	100	97	94	14.70	17.72
5	105-115	110	105	101	12.15	17.87
6	115-125	118	112	107	6.83	7.50
	· · ·		T	DTAL	100	100

Table 27. Temperature Distribution as a Function of Traffic of a 3 in. Asphalt Overlay (Dallas Area).

Table 28. Temperature Distribution as a Function of Traffic of a 3 in. Asphalt Overlay.

					and the second	
Profile No.	Temp. (°F)	<u>Sub-la</u> 1	yer Te 2	mp. (°F) 3	% Time	% Traffic
1	< 75	68	70	72	25.69	32.62
2	75-85	79	81	82	25.69	30.08
3	85-95	90	89	88	14.93	14.52
4	95-105	100	97	94	14.70	9.37
5	105-115	110	105	101	12.15	9.44
6	115-125	118	112	107	6.83	3.97
			Ţ	DTAL	100	100

ADDITIONAL APPLICATIONS

Pavements exposed to the open environment are greatly influenced by environmental conditions. The performance of the pavements and the materials in the pavement systems are all affected by meteorological conditions. In order to properly evaluate the effect of these conditions on a pavement, it is necessary to have a knowledge of the climate in which the structure is built.

The regression mode of temperature variations in asphalt concrete layers just described has applications to an extensive range of asphalt pavement systems which are influenced by different environmental factors. Generally speaking, it applies to any material characterization in which the material properties are the function of temperatures. The study of permanent deformation for the Dallas area demonstrated one of several applications in which the stiffness of asphalt mixes is the function of temperatures. Some of the other applications are summarized as follows:

- 1. The model can be used to study the effect of resilience of asphalt concrete pavements since the modulus of elasticity of asphalt varies with temperatures. Much time is required to collect temperature data from field measurements for one area. It is far easier to use the temperature regression model to analyze climatic data readily available at most weather stations than to measure temperatures from the field. This approach can be used for any geographical location, for any type of climate, and for pavement systems with different thermal and physical properties.
- 2. The same method used for permanent deformation analysis can be used directly for thermal cracking analysis in asphalt pavement systems. Low temperature thermal stress induced by temperature changes depends on the temperature drop per unit of time because the magnitude of the stress is proportional to the temperature drop. If the same method is applied to the winter period, a similar regression model with 2 time variables (Xtime of day, Y-day of a year) can be obtained:

$$T = f_1(x, z) + f_2(y)$$
 (15)

Differentiating Equation 15 with respect to the time t the temperature drop per unit time is obtained:

$$\frac{\partial T}{\partial t} = \frac{\partial f_1(x,z)}{\partial X} \frac{\partial X}{\partial t} + \frac{\partial f_2(y)}{\partial Y} \frac{\partial Y}{\partial t}$$
(16)

where:

 $\frac{\partial X}{\partial t}$ and $\frac{\partial Y}{\partial t}$ are constrants determined by the time ratios.

Equations (15 and 16) give the temperature drop for a given time increment t and depth z. Further analysis can provide more detailed information such as mean and maximum temperature drops during certain time periods.

(a) A set of the se

SUMMARY AND CONCLUSIONS

SUMMARY

An investigation was conducted to develop a more realistic procedure for evaluating temperature variations in asphalt concrete overlays over concrete pavements. Daily detailed climatic data from representative weather stations in four climactic regions of Texas were used to calculate temperature fluctuations in the asphalt layer based on the past 30 years of climatic data. An extensive statistical analysis procedure was developed that provided a regression model for each region which describes temperature variations in the asphalt concrete overlay. The resulting regression models provide essential temperature data for calculating permanent deformation using the modified ILLIPAVE computer program.

A relationship between temperature distribution and traffic distribution can be found by combining the temperature regression model with a traffic density function. Other examples of applications of the procedure include the analysis of low temperature cracking and resilient modulus of the asphalt concrete layers.

CONCLUSIONS

From the result of this study, the following conclusions can be made:

- This study takes another step forward in the simulation of the temperatures in asphalt concrete layers by considering the temperature variations and temperature gradients, induced by the local climatic changes, in asphalt concrete layers.
- 2. The proposed analysis method which is based on long term local climatic data provides reliable information for the prediction of permanent deformation based on testing conducted under laboratory conditions.
- 3. The temperature regression model can be used to find a relationship between temperature variation and traffic pattern

and to study their combined effect on rutting since different traffic patterns cause different rutting depths for a given asphalt pavement and structure.

4. The regression equations, equations 4 and 5, with high R^2 values can be applied to conditions where material properties are a function of temperature. The prediction of permanent deformation and the prediction of low temperature thermal cracking are examples of how this analysis may be extended.

The method demonstrated here can be used for any pavement system, meteorological condition, and geographical location.

5.

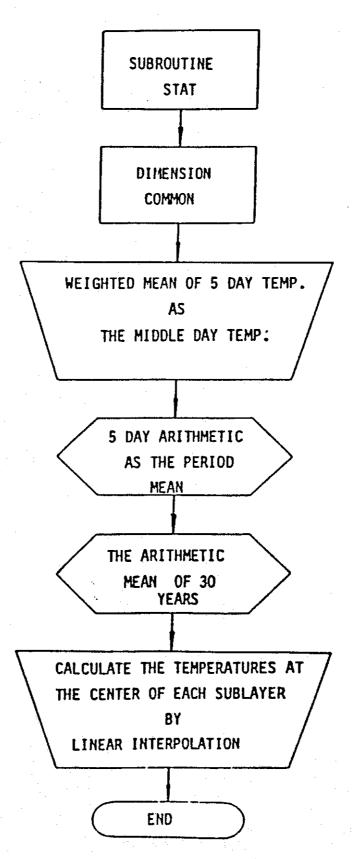
REFERENCES

- 1. Shell Oil Company, Shell Pavement Design Manual, 1978.
- Claessen, A.I.M., J.K. Edwards, P. Sommer and P. Uge, "Asphalt Pavement Design (The Shell Method)", Proceedings of the Fourth International Conference on the Structural Design of Asphalt Pavements, University of Michigan, 1977, pp. 39-74.
- Van De Loo, The Creep Test: "A Key Tool in Asphalt Mix Design and in the Prediction of Pavement Rutting", Proceedings of the Association of Asphalt Paving Technologists, Vol. 47, 1978, pp. 523-557.
- Freddy L. Roberts, Thomas W. Kennedy, and Gary E. Elkins, "Material Properties to Minimize Distress in Zero Maintenance Pavements", Report #FHWA-RD-80, U.S. Department of Transportation, Federal Administration, Washington, D.C., April 1980.
- Jack Morris, Ralph C.G. Haas, "Permanent Deformation in Asphalt Pavements Can Be Predicted", Proceedings of the Association of Asphalt Paving Technologists, Vol. 43, 1974, pp. 41-76.
- 6. ILLI-PAVE "A Finite Element Program for the Analysis of Pavements", Construction Engineering Laboratory and the Transportation Facilities group, Department of Civil Engineering, University of Illinois at Urbana, May 1982.
- 7. Rada, G. and Witczack, M.W., "Comprehensive Evaluation of Laboratory Resilient Moduli Results from Granular Material", Transportation Research Record 810, Transportation Research Board, National Research Council, Washington, D.C., 1981.
- F.L. Roberts, J.T. Tielking, D. Middleton, R.L. Lytton, K.H. Tseng, "Effects of Tire Pressures on Flexible Pavements", Research Report 372-1F, Texas Transportation Institute, Texas A&M University, August 1986.
- B.J. Dempsey, "A Heat Transfer Model for Evaluating Frost Action and Temperature Related Effects in Multilayered Pavement Systems", Doctoral Thesis, University of Illinois, 1969.

- J.T. Helwig, K.A. Council, P.S. Reinhardt, SAS User's Guide, SAS Institute Inc., 1979 edition.
- 11. Kuo-Hung Tseng, Robert L. Lytton, "Prediction of Permanent Deformation in Flexible Pavements Materials", Presented at the ASTM Symposium on Implication of Aggregates in the Design, Construction and Performance of Flexible Pavements, New Orleans, LA., December, 1986.

APPENDIX A

Required Data for Dempsey's Model


APPENDIX A

Required Data for Dempsey's Model

- 1. Pavement identification.
- 2. Location of test site.
- 3. Starting date of evaluation.
- 4. Total depth of the finite difference pavement system, in.
- 5. Depth of normal node, in.
- 6. Time increment, hr.
- Maximum allowable convection coefficient for stability criteria, Btu/hr-ft²-F, (3.0 for all layers).
- 8. Number of pavement layers.
- 9. Number of termination nodes.
- Thermal conductivities of each layer, Btu/hr-ft-F, (0.70 for asphalt concrete, 1.92 for concrete and stabilized layers, and 0.92 for subgrade).
- 11. Heat capacities of each layer, Btu/lb-F, (0.22 for asphalt concrete, 0.24 for concrete and stabilized layers, 0.29 for subgrade).
- Total unit weights of each layer, pcf, (148 for asphalt concrete, 155 for concrete, 145.5 for stabilized layer, and 128.7 for subgrade).
- 13. Depth of each pavement layer, in.
- 14. Moisture content of each pavement layer, percent.
- 15. Temperature of the constant temperature node, F.
- 16. Radiation constants A and B (0.202 and 0.539).
- 17. Geiger radiation constants G and J (0.77 and 0.28).
- 18. Atmospheric vapor pressure, mm.
- 19. Cloud base factor (0.85).
- 20. Number of pavement temperature profiles to be printed each day.
- 21. Times at which the temperature profiles to be printed out each day, hr.

- 22. Number of days to be evaluated, days.
- 23. Times of sunrise and sunset each day, hr.
- 24. Extraterrestrial radiation, Btu/ft-day, (generated by the program based on the location).
- 25. Initial pavement temperature profile, F.
- 26. The year being considered.
- 27. Maximum daily air temperature on the day before the starting day and the minimum daily air temperature on the day after the last day in the evaluation period, F.
- 28. Date of the day being evaluated.
- 29. Maximum daily temperature, F, (on data tape).
- 30. Minimum daily air temperature, F, (on data tape).
- 31. Average daily wind velocity, mph, (on data tape).
- 32. Percentage of possible daily sunshine, %, (on data tape).

APPENDIX B. Computer Flow Diagram of STAT Subroutine

APPENDIX C

Example of Output From SAS Analysis

SAS(R) LOG OS SAS 5.16 MVS/XA JOB HEATT STEP SAS

NOTE: COPYRIGHT (C) 1984.1986 SAS INSTITUTE INC., CARY, N.C. 27511, U.S.A. NOTE: THE JOB HEATT HAS BEEN RUN UNDER RELEASE 5.16 OF SAS AT TEXAS ANM UNIVERSITY (01452001).

NOTE: CPUID VERSION = 82 SERIAL = 000261 HODEL + 0580 .

NOTE: SAS OPTIONS SPECIFIED ARE: SORT=4

> DATA TEMP: INPUT DATE TIME LAYER PROFILE TEMP: CARDS:

NOTE: DATA SET WORK.TEMP HAS 2592 OBSERVATIONS AND 5 VARIABLES. 433 OBS/TRK. NOTE: THE DATA STATEMENT USED 0.34 SECONDS AND 100K.

2596 DATA TEMP1: SET TEMP: IF 7 <-TIME AND TIME <-19: 2597

NOTE: DATA SET WORK, TEMPI HAS 1404 OBSERVATIONS AND 5 VARIABLES, 433 OBS/TRK. NOTE: THE DATA STATEMENT USED 0.11 SECONDS AND 100K.

DATA TEMP2: SET TEMP: IF TIME -- G OR TIME >19: 2598

NOTE: DATA SET VORK, TEMP2 HAS 1188 OBSERVATIONS AND 5 VARIABLES, 433 OBS/TRK. NOTE: THE DATA STATEMENT USED 0.10 SECONDS AND 100K.

2599 PROC GLM DATA-TEMP1; MODEL TEMP-DATE TIME LAYER DATE+DATE TIME+LAYER

TIME*TIME TIME*TIME*LAYER TIME*TIME*TIME: 2600

2601 DUTPUT OUT=NEW PREDICTED=YPREDIC RESIDUAL=YRESIDU;

NOTE: THE DATA SET WORK.NEW MAS 1404 OBSERVATIONS AND 7 VARIABLES. 317 DBS/TRK. NOTE: THE PROCEDURE GLH USED 0.69 SECONDS AND 416K AND PRINTED PAGE 1.

2602 DATA THREE: NERGE TEMP1 NEW:

NOTE: DATA SET WORK, THREE HAS 1404 OBSERVATIONS AND 7 VARIABLES, 317 OBS/TRK. NOTE: THE DATA STATEMENT USED 0. 13 SECONDS AND 148K.

2503 PROC PLOT DATA-THREE:

PLOT YPREDIC+TEMP YRESIDU-YPREDIC; 2604

NOTE: THE PROCEDURE PLOT USED 0.24 SECONDS AND 196K AND PRINTED PAGES 2 TO 3.

PROC GLN. DATA-TEMP2; 2605

2606 NODEL TEMP+DATE TIME LAYER DATE+DATE TIME+TIME

TIME*TIME*TIME TIME*TIME*TIME*TIME: 2607

2608 OUTPUT OUT-NEW2 PREDICTED-YPREDIC RESIDUAL-YRESIDU;

NOTE: THE DATA SET WORK, NEW2 HAS 1188 DESERVATIONS AND 7 VARIABLES. 317 DES/TRK. Note: The Procedure GLM USED 0.56 Seconds and 416k and printed page 4.

DATA FOUR: NERGE TEMP2 NEW2: 2609

NOTE: DATA SET WORK, FOUR HAS 1188 DESERVATIONS AND 7 VARIABLES. 317 DES/TRK. NOTE: THE DATA STATEMENT USED 0. 12 SECONDS AND 148K.

PROC PLOT DATA=FOUR: 2610

2611 PLOT YPREDIC*TEMP YRESIDU-YPREDIC;

NOTE: THE PROCEDURE PLOT USED 0.22 SECONDS AND 186K AND PRINTED PAGES 5 TO 6.

2612 DATA RANGESET KEEP RANGE PROFILE :SET TEMP: SAS(R) LDG DS SAS 5.16

2

MVS/XA JOB HEAT I STEP SAS

3:02 FRIDAY, MAY 8, 1987

2613 IF LAYER=1 : IF TEMP < 75. THEN RANGE=1; 2614 2615 IF 75. <- TEMP<85 THEN RANGE+2: IF 85. <*TEMP<95 THEN BANGE+3: 2616 JF 95.0 <-TEMP <105 THEN RANGE=4: 2617 2618 IF 105. <- TEMP <115 THEN RANGE-5; IF 115. -TEMP <125 THEN RANGE=6: 2619 IF 125. - TEMP <135 THEN RANGE =7; 2620 2621 IF TEMP> 135. THEN RANGE-8;

NOTE: DATA SET WORK, RANGESET HAS 864 DBSERVATIONS AND 6 VARIABLES, 366 DBS/TRK. NOTE: DATA SET WORK, KEEP HAS 864 DBSERVATIONS AND 6 VARIABLES, 366 DBS/TRK. NOTE: DATA SET WORK, RANGE HAS 864 DBSERVATIONS AND 6 VARIABLES, 366 DBS/TRK. NOTE: DATA SET WORK PROFILE HAS 864 DBSERVATIONS AND 6 VARIABLES, 366 DBS/TRK. NOTE: DATA STATEMENT USED 0.16 SECONDS AND 172K.

2622 PRDC SORT DATA-TEMP :BY PROFILE :

NOTE: 4 CYLINDERS DYNAMICALLY ALLOCATED ON SYSDA FOR EACH OF 3 SORT WORK DATA SETS. Note: Data set work.temp has 2582 deservations and 5 variables, 433 des/trk. Note: The procedure sort used 0.35 seconds and 280%.

2623 PROC SORT DATA-RANGESET ; BY PROFILE ;

NOTE: DATA SET WORK, RANGESET MAS 864 DESERVATIONS AND 6 VARIABLES. 366 DES/TRK. Note: The procedure Sort Used 0.17 seconds and 292K.

2624 PROC FORMAT: 2625 VALUE P 2626 1= PROFILE 1' 2627 2='PROFILE 2' 3- PROFILE 3' 2628 2629 A-"PROFILE 4" 2630 S+*PROFILE 5' 2631 6- PROFILE 6' 7- PROFILE 7' 2632 NOTE: FORMAT P HAS BEEN OUTPUT. 2633 arrPROFILE #'; NOTE: THE PROCEDURE FORMAT USED 0.08 SECONDS AND 176K. 2634 DATA ALL ; MERGE TEMP RANGESET ; BY PROFILE ;

NOTE: DATA SET WORK.ALL MAS 2592 DESERVATIONS AND 6 VARIABLES. 366 DES/TRK. NOTE: THE DATA STATEMENT USED 0.23 SECONDS AND 148K.

2635 PROC SORT DATA + ALL : BY LAYER RANGE :

NOTE: DATA SET WORK ALL HAS 2592 OBSERVATIONS AND 6 VARIABLES. 366 OBS/TRK. NOTE: THE PROCEDURE SORT USED 0.32 SECONDS AND 280K.

2636 PROC MEANS ; BY LAYER RANGE;

NOTE: THE PROCEDURE MEANS USED 0.33 SECONDS AND 208K AND PRINTED PAGES 7 TO 9.

- 2637 PROC FRED DATA=ALL:
- 2638 TABLES BANGE "LAYER: FORMAT RANGE P.:
- NOTE: THE PROCEDURE FRED USED 0.20 SECONDS AND 400K AND PRINTED PAGE 10.
- NOTE: SAS USED 416K MEMORY,

SAS(R) LOG OS SAS 5.16

NGTE: SAS INSTITUTE INC. SAS CIRCLE PO BOX BOOO CARY, N.C. 27511-8000

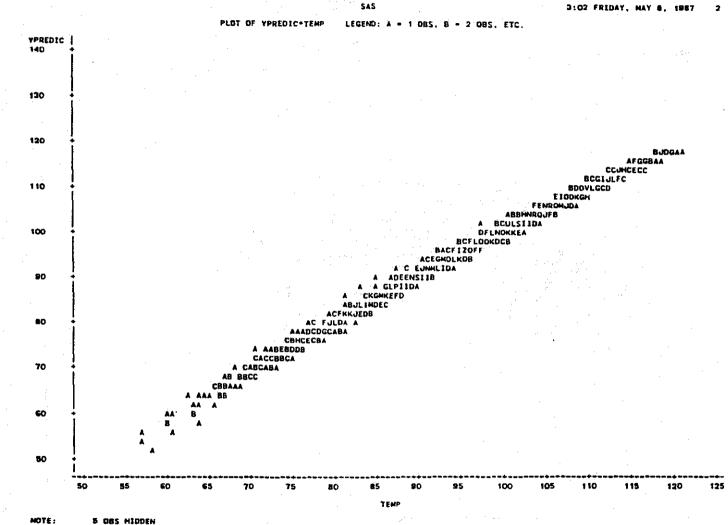
3

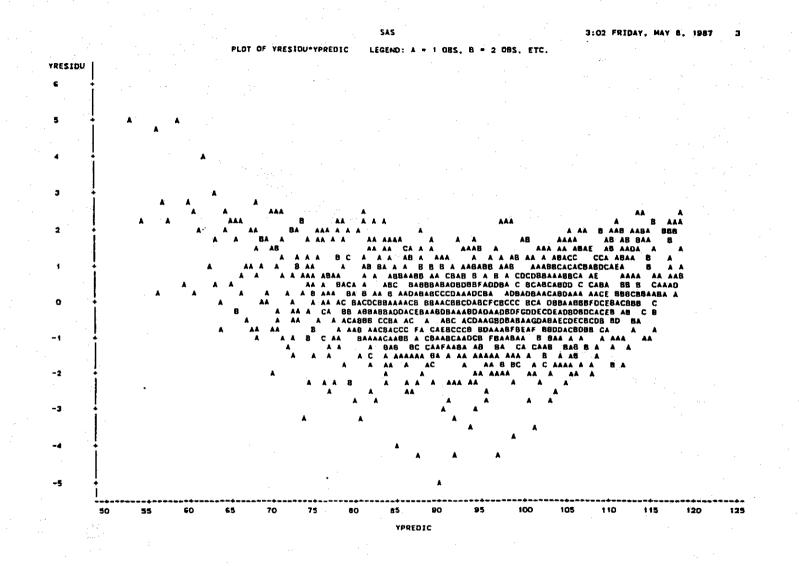
65

MVS/XA JOB HEATT STEP SAS

3:02 FRIDAY, MAY 4, 1987

		G	ENERAL LINEAR	MODELS PROC	EDURE			
DEPENDENT VARIABLE	: TEMP					. *	• •	
SDURCE	DF	SUM DF SQUARES	MEAN S	DUARE	F VALUE	PR > F	R-SOUARE	C.V.
HODEL	8 .	228 181.77424585	28522.721	78086	22717.04	0.0001	0.992383	1.1754
ERROR	1395	1751.51310868	1.255	56495		ROOT MSE		TEMP MEAN
CORRECTED TOTAL	1403	229933.28735553				1 . 1205 1995		85.33175926
SOURCE	DF	TYPE I SS	F VALUE	PR > F	DF	TYPE III SS	F VALUE	PR > F
DATE	1	15282.60901698	12171.90	0.0001	1	64628 . 4989 1468	51473.64	0.0001
TIME	1	40298.86899271	32096.20	0.0001	1	864.84405024	686.81	0.0001
LAYER	-1	9654.97656932	7689.75	0.0001	· 1	2067.89608226	1646,99	0.0001
DATE DATE	1	85910.79148859	68424.01	0.0001	1	85910.79148859	68424.01	0.0001
TIME*LAYER	1	2219.17177259	1767.47	0.0001	1	38 19 . 46 199437	3042.03	0.0001
TIME*TIME	1	68244.65008334	54353.74	0.0001	1	67.26072021	53.69	0.0001
TINE*TIME*LAYER	1 1 E	4656.80435761	37 16 . 66	0.0001	1	4666.50435761	3716,66	0.0001
TIME TIME TIME	· 1	1904.20195571	1516.61	0.0001	1	1904.20196571	1516.61	0.0001

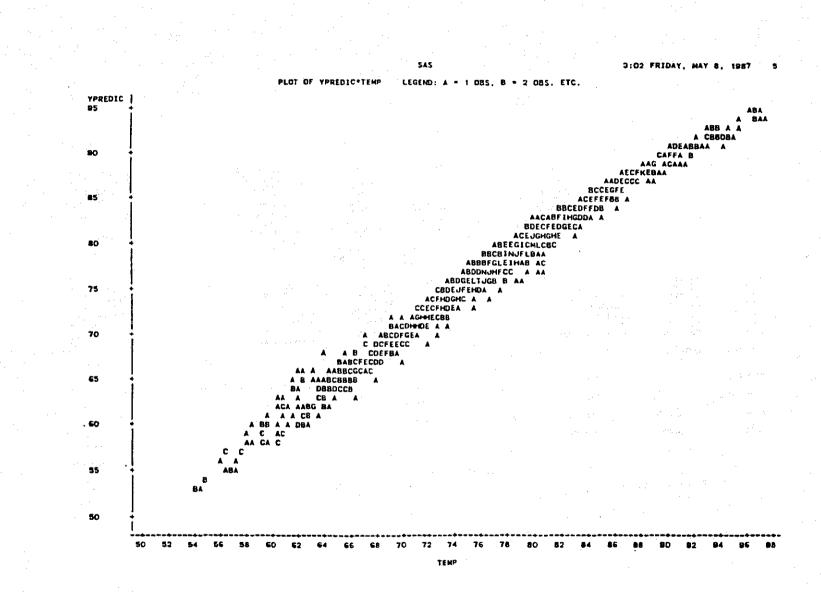

		T FOR HO:	PR > T	STD ERROR OF
PARAMETER	ESTIMATE	PARAMETER+0		ESTIMATE
INTERCEPT	-7.37747191	-4.23	0.0001	1,74499359
DATE	2.68441704	226.88	D.0001	0.01183198
TIME	10.46812755	26.25	0.0001	0.39885928
LAYER	19.32725122	40,58	0.0001	0.4762391R
DATE*DATE	-0.08113541	-261.58	0.0001	0.00031017
TIME*LAYER	-4.26659264	-55.15	0.0001	0.07735701
TINE*TINE	0.21952908	7.32	0.0001	0,02998930
TINE*TINE*LAYER	0, 17892750	60.96	0.0001	0.00295135
TIMETTINE-TIME	-0.02926142	-38.94	0.0001	0.00075138


SAS GENERAL LINEAR MODELS PROCEDURI

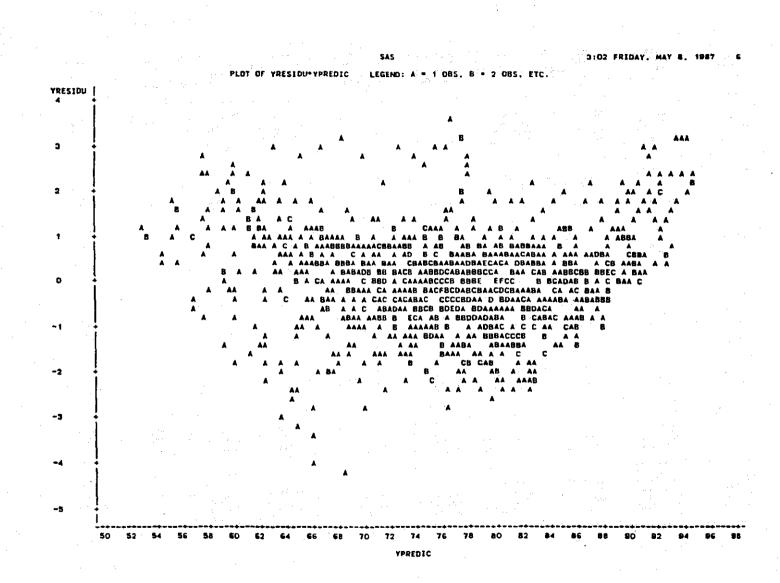
1 A.

3:02 FRIDAY, MAY 8, 1987

.


3:02 FRIDAY, MAY 8, 191

SAS GENERAL LINEAR NODELS PROCEDURE


DEPENDENT VARIABLE: TEMP

SOURCE	DF	SUM OF SQUARES	NEAN S	QUARE	F VALUE	₽R > F	R-SQUARE	C.V.
MODEL	7	82560-40912504	11794.344	16072	9925.85	0.0001	0.983301	1.4236
ERROR	1180	1402.12955373	1,188	24538		ROOT MSE		TEMP NEAN
CORRECTED TOTAL	1187	83962.53667877	11.1 191			1.00006669		76.55968013
SOURCE	DF	TYPE 1 SS	F VALUE	PR > F	DF	TYPE 111 55	F VALUE	PR > F
DATE	1	4675.92921973	4 103 . 47	0.0001	1	37585.42385364	31631.03	0,000 t
TIME	t	16180.30912705	13617.14	0.0001	1	947,80030270	797.65	0.0001
LAYER	1	4600.83463649	3871.96	0.0001	1	4600.83463649	3871.96	0.0001
DATE-DATE	4	47258.63928237	39771.7B	0.0001	.1	47258.63928237	39771.78	0.0001
TIME-TIME	1	518.14961366	436,90	0.0001	\$	£63,25258910	558.18	0.0001
TIME-TIME-TIME	1	8916.02579882	7503.52	0.0001	1	365,98644742	327.36	0.0001
TIME*TIME*TIME*TIME	1	209.32144690	176.16	0.0001	1	209.32144690	176.16	0.0001
					1 - E			

PARAMETER	ESTIMATE	T FOR HO: PARAMETER=0	PR > T	STD ERROR OF ESTIMATE
INTERCEPT	62.66070339	260.84	0.0001	0.24022340
DATE	2.22547650	177.85	0.0001	0.01251314
TIME	-4.51637367	-28.24	0.0001	0.15991327
LAYER	2.41021465	62.23	0.0001	0.03873383
DATE+DATE	-0.06541879	-199.43	0.0001	0.00032803
TIME=TIME	0.80313852	23.63	0.000 t	0.03399414
TIME *TIME *TIME	-D.03955661	- 18.09	0,0001	0.00218628
TIME*TIME*TIME*TIME	0.00057167	13,27	0.0001	0.00004307

C)

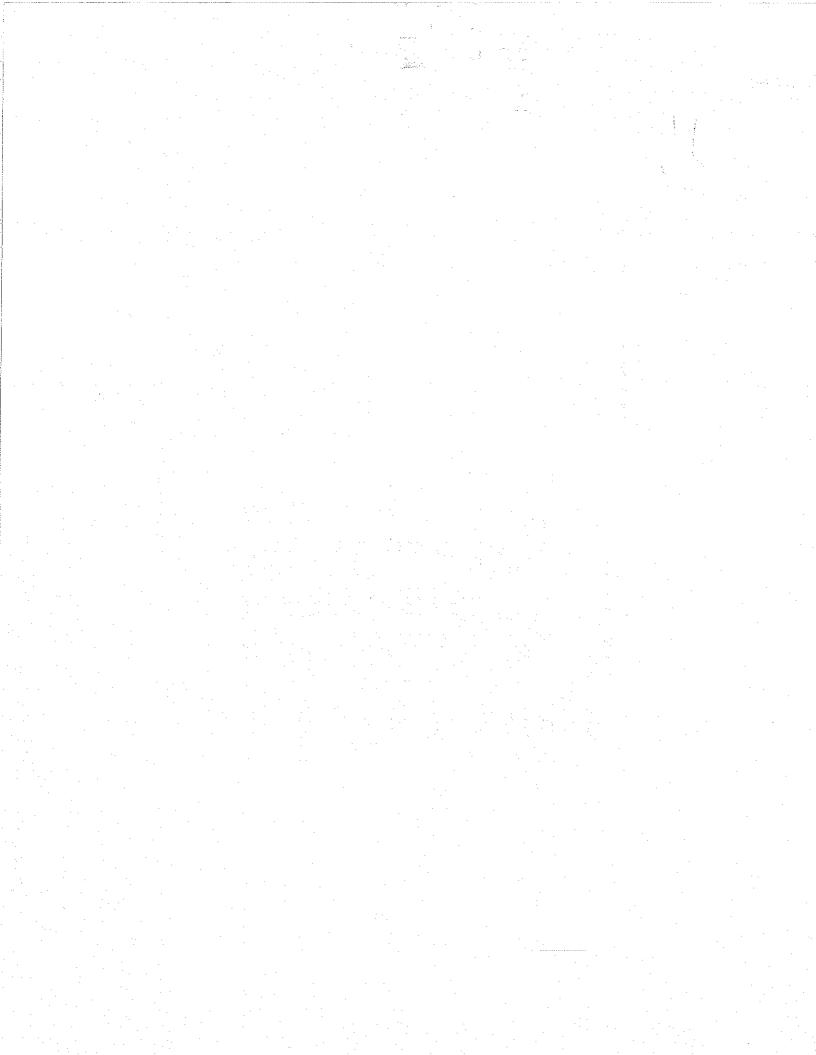
VARIABLE H HEAN STANDARD DEVIATION HITTNUM VALUE MAXINUM STD FROM SLM VARIANCE DATE 222 21.12612613 13.20046919 1.00000000 36.00000000 0.88649441 4590.00000 174.45356 DATE 222 21.12612613 13.20046919 1.00000000 24.00000000 0.56717208 2026.00000 174.45356 PAPFILE 222 48.02207703 5.21891762 1.00000000 24.00000000 0.3503760 15100.89000 17.443388 PERFILE 222 18.216271622 8.04417630 1.00000000 24.00000000 0.35033760 15100.89000 74.101388 PROFILE 222 13.25675676 8.60820530 1.00000000 24.0000000 0.57774481 2443.0000000 74.101371 8461.000000 24.117171 8461.000000 24.117171 8461.000000 24.117171 8461.0000000 24.10000000 24.117171 8461.0000000 24.117171 8461.0000000 24.117171 8461.0000000 24.117171 8461.0000000 24.11717171 <t< th=""><th>987</th></t<>	987
DATE ITME 222 22 21.12612613 13.20846919 1.00000000 1.00000000 35.0000000 24.00000000 0.85649441 4580.00000 174.45265 PROFILE 222 45.12513513 8.45067361 1.00000000 24.0000000 0.55717208 2026.00000 101813.0544 PERFLE 222 45.21521522 5.21891252 54.10000000 74.9800000 0.3503760 10235.00000 101813.05444 CATE 222 13.2567367 1.00000000 24.0000000 0.57774481 294.0000000 74.91188 PROFILE 222 454.45855 214.7147847 8.00000000 0.57774481 294.0000000 74.1118 PROFILE 222 454.449455 214.7147847 8.00000000 0.57774481 294.000000 74.1118 PROFILE 222 454.449555 5.24147860 7.0000000 24.0000000 0.57774481 294.000000 74.71118 224 447.37209302 249.81521514 7.0000000 24.041024314 450000000 24.98700326 57711.0000000 62.4077.41715	C.
Lite 222 8.12612613 8.430672851 1.00000000 24.00000000 0.55717208 2025.00000 71.41388 PROFILE 222 422.15315315 318.09428660 1.00000000 74.8600000 0.35033760 15810.89000 10718.87844 PATE 222 422.153153153 518.09428660 1.00000000 74.8600000 0.35033760 15800.89000 10718.87844 PATE 222 18.21621622 8.84417620 1.00000000 24.0000000 0.600293980 4044.000000 79.988288 PROFILE 222 426.44584585 214.71478347 8.00000000 6.7774481 243.000000 4.1011271 94671.000000 8.700181 PROFILE 222 426.445455 214.71478347 8.00000000 0.8774481 94571.000000 8.700181 PROFILE 222 79.34783764 2.8501153 75.0400000 2.00000000 0.81647282 2457.0000000 27.473110 PROFILE 129 19.04831623 10.40572823 1.000000000 2.00000000 0.4648556 <t< td=""><td></td></t<>	
TIME 222 8.12617613 8.45067361 1.00000000 24.00000000 0.56717206 2026.00000 1.41284 PROFILE 222 482.15315315 316.0942860 1.00000000 74.98000000 0.35033760 108236.00000 108236.00000 10723.04703 DATE 222 18.21621622 8.84417620 1.00000000 34.0000000 0.60029380 4044.000000 79.988286 TIME 222 13.2567356 8.6020530 1.00000000 34.0000000 0.60029380 4044.000000 79.988286 PROFILE 222 425.44584585 214.71478147 8.00000000 0.5777481 2943.000000 71.41281 PROFILE 222 426.44584585 214.71478147 8.00000000 0.5777441 71.5775.000000 87.777491 71.575.0000000 71.41281 PROFILE 122 426.44581162 10.40572292 1.00000000 2.00000000 0.91617382 2457.000000 72.721110 DATE 129 90.04681163 10.00000000 2.00000000 0.21898751	62.5
PROFILE 222 482.15315315 318.09428650 1.00000000 621.04000000 0.35033760 103258.00000 27.24748 DATE 222 18.21621622 8.64417620 1.00000000 36.0000000 0.50029380 4044.000000 78.882288 TIME 222 18.21621622 8.64417620 1.00000000 36.0000000 0.57774481 2843.000000 74.101188 PROFILE 222 226.4456459576 8.60820530 1.00000000 24.0000000 0.57774481 2843.000000 74.101188 PROFILE 222 22.64456459576 8.60820530 1.00000000 24.0000000 0.57774481 2843.000000 74.101188 PROFILE 224 48.4174347 2.95011539 75.04000000 36.0000000 0.91617282 2457.000000 108.278077 DATE 128 19.04651163 10.40572283 1.00000000 21.9850326 177.14711 8677.000000 21.473110 PROFILE 128 447.37209302 24.81521514 10.00000000 21.9850326 177.1700000 108.278077 TIME 129 47.37209302 24.81521514	92.5
FEMP 222 68.02202703 5.21991262 54.10000000 74.98000000 0.35033760 15100.88000 27.24748 DATE 222 18.21621622 8.84417630 1.00000000 36.0000000 0.507734810 2944.000000 79.882288 PROFILE 222 18.2464594595 214.71478347 8.0000000 657.0000000 0.41071371 94671.000000 46102.438241 PROFILE 222 19.04851163 10.40572289 1.00000000 36.0000000 0.91617282 2457.000000 46102.438241 DATE 129 14.25541385 5.24147980 7.0000000 36.0000000 0.91617282 2457.000000 108.276070 DATE 129 14.25541385 5.24147980 7.00000000 21.99000000 0.46148556 1839.000000 27.473110 TEMP 129 49.7500752 2.83808570 85.20000000 0.24987951 11577.76000 8.054730 THE 127 16.37007874 10.47430988 1.00000000 0.31004316 1741.1000000 12.200090 <tr< td=""><td>84.6</td></tr<>	84.6
DATE 222 16.21621622 6.94417620 1.00000000 36.00000000 0.65029380 4044.000000 78.988288 TIME 222 13.25675676 8.6920530 1.00000000 24.0000000 0.57774481 2843.000000 74.101188 PROFILE 222 78.34763764 2.95011539 75.04000000 85.00000000 0.417171 94751.000000 46102.428241 TEMP 222 78.34763764 2.95011539 75.04000000 35.0000000 0.18799878 17615.220000 46102.428241 DATE 129 16.04532032 248.8151164 10.0000000 25.0000000 0.41617282 2457.000000 624.773100 PROFILE 129 44.737209302 248.8151514 10.0000000 25.0000000 0.41617852 2457.600000 624.711.100000 PROFILE 129 45.7007874 10.47430958 1.00000000 23.0000000 0.31004316 1741.000000 12.208098 PROFILE 127 16.37007874 10.47430958 1.000000000 23.00073000 0.31004316	7.6
TIME 222 13.25675676 8.60820530 1.0000000 24.0000000 0.57774481 2843.000000 41.01121 Bett 1.000000 A1.01131 DATE 129 14.25581355 5.24147980 7.0000000 22.0000000 0.4164855 10.0000000 62.407.641715 TIME 129 447.37209302 248.81521514 10.00000000 855.0000000 0.24897951 11577.76000 8.054730 TEMP 129 447.37209302 248.8152151 10.00000000 94.95000000 0.24897951 11577.760000 8.054730 TEMP 129 48.75007732 2.8380570 85.20000000 0.24897951 11577.760000 12.000970 TIME 127 16.37007874 10.47430988 1.000000000	*****
PROFILE 222 426.44594585 214.71478347 6.0000000 857.0000000 14.41071271 9.4671.000000 46102.438341 FEMP 222 79.34783784 2.85011539 75.04000000 84.90000000 0.19799878 17615.220000 46102.438341 DATE 129 19.04851163 10.40572293 1.00000000 26.00000000 0.46148656 1839.000000 27473110 PROFILE 129 447.37209302 249.81521514 10.0000000 21.00000000 0.46148656 1839.000000 2747310 PROFILE 129 89.75007752 2.8360870 85.20000000 21.98500326 57711.00000 8.054730 DATE 127 16.37007874 10.47430958 1.00000000 13.00000000 0.31004316 1741.000000 12.208099 PROFILE 137 18.37007874 10.47430958 1.00000000 13.00000000 0.31004316 1741.000000 12.208099 TIME 127 100.025118 13.08173675 85.00000000 13.00000000 0.31004316 1741.000000	49 1
TEMP 222 79.34783784 2.85011539 75.04000000 84.80000000 0.19798878 17615.220000 8.703181 DATE 128 19.04651163 10.40572293 1.00000000 36.0000000 0.81617282 2457.000000 108.278070 TIME 129 14.23581395 5.24147980 7.0000000 85.0000000 0.46148656 1839.000000 27.473110 PROFILE 129 447.37209302 24.81521514 10.00000000 85.0000000 0.46148656 1839.000000 27.473110 TEMP 129 49.75007752 2.83608570 85.20000000 94.98500000 0.24987951 11577.760000 8.054730 LAYER+1 RANGE+4 127 16.37007874 10.47430988 1.00000000 30.0000000 0.31004316 17411000000 12.200099 PROFILE 127 18.23605113 251.3953531 12.0000000 783.0000000 0.27435922 12703.190000 63199.624672 TIME 127 100.02311811 3.0817367 85.00000000 7183.0000000 0.	64.9
DATE 129 19.04651163 10.40572293 1.00000000 26.0000000 0.91617282 2457.000000 108.279070 DATE 129 44.25511335 5.24147980 7.0000000 22.0000000 0.4614855 1839.00000 57.473110 PROFILE 129 447.37209302 249.81521514 10.0000000 855.0000000 0.4614855 1839.00000 62.0407.641715 DATE 129 49.75007752 2.83808570 85.2000000 855.0000000 0.24987951 11577.760000 8.054730 DATE 127 16.37007874 10.47430958 1.00000000 19.0000000 0.24987951 1977.760000 10.9.711161 TIME 127 16.37007874 10.47430958 1.00000000 14.0000000 2.30773050 4559.000000 12.2080959 PROFILE 127 362.39053118 231.3353331 12.00000000 733.00000000 2.30773050 4559.000000 5.497101 LAYER*1 RANCE*5 105 16.09523810 7.3693047 4.000000000 12.9000000 0.25	50.3 3.7
DATE 128 19.04851163 10.40372293 1.00000000 35.0000000 0.91617282 2457.000000 108.279070 TIME 129 14.25581395 5.24147980 7.0000000 22.0000000 0.4614855 1839.00000 27.473110 PR0FILE 129 447.37209302 249.81521514 10.0000000 855.0000000 2.19850326 57711.000000 27.473110 DATE 129 69.7500752 2.83808370 85.0000000 10.4614855 1839.00000 27.473110 DATE 129 69.7507752 2.83808370 85.0000000 0.24887951 11577.75000 8.054730 DATE 127 18.37007874 10.47420988 1.00000000 19.0000000 0.31004316 1741.000000 12.208098 TIME 127 18.37007874 10.47420988 1.000000000 73.0000000 0.31004316 1741.000000 12.208098 TRMP 127 100.02511811 3.08173675 55.00000000 0.71835228 1650.0000000 18.47100110 THP 127	
TIME 129 14.25581335 5.24147960 7.0000000 22.0000000 0.46148556 1839.00000 27.473110 PROFILE 129 447.37209302 249.81521514 10.00000000 855.00000000 21.99500326 57711.00000 62407.641715 PROFILE 129 447.37209302 249.81521514 10.00000000 9.495000000 0.24987251 11577.760000 8.054730	
PROFILE 129 447.37209302 249.81521514 10.00000000 \$55.0000000 21.98500326 \$7711.000000 \$62407.641715 TEMP 129 \$9.75007752 2.8380570 \$5.2000000 94.95000000 0.24987951 11577.760000 8.054730 LAYER=1 RANGE*4 LAYER=1 RANGE*4 0.31004316 1741.1000000 10.92944468 2078.0000000 10.921000000 0.92944468 2078.0000000 12.206099 PROFILE 127 16.37007874 10.47430958 1.00000000 18.0000000 0.92944468 2078.0000000 12.206099 PROFILE 127 362.59055118 251.39535531 12.00000000 783.0000000 0.27345992 12703.180000 63199.624672 TEMP 127 16.09523810 7.26092047 4.00000000 29.0000000 0.71835228 1690.000000 5.804945 DATE 105 13.57142857 2.409345370 86.00000000 18.0000000 0.73512803 1425.000000 5.804945 TIME 105 13.57142857 2.409345370 86.00000000 14.74000000 0.26581526 11548.180000 7.418064 </td <td>54.6</td>	54.6
TEMP 129 89.75007752 2.83808570 85.20000000 94.95000000 0.24987951 11577.760000 8.054730 DATE 127 16.37007874 10.47430958 1.00000000 33.0000000 0.92944468 2078.000000 109.711161 DATE 127 13.70866142 3.49400901 8.0000000 19.0000000 0.31004316 1741.000000 12.208099 PR0FILE 127 182.59055118 251.3953531 12.0000000 104.9900000 0.31004316 1741.000000 12.208099 PR0FILE 127 160.02511811 3.08173675 95.0000000 104.9900000 0.27343992 12703.190000 8.497101	36.7
LAYER=1 RANGE=4 LAYER=1 RANGE=4 LAYER=1 127 16.37007874 10.47430858 1.00000000 31.0000000 0.92944468 2078.000000 109.711161 TIME 127 13.70866142 3.48400901 8.0000000 18.0000000 0.31004316 1741.000000 12.208099 RADFILE 127 132.38055118 21.3953531 12.0000000 783.0000000 22.30773050 48589.000000 6.31094316 1741.000000 6.318244672 TEMP 127 160.02511811 3.08173675 95.0000000 19.9000000 0.31004316 1741.000000 5.318244672 DATE 105 16.09523810 7.36092047 4.00000000 29.00000000 0.71835228 1690.000000 5.804945 DATE 105 16.09523810 7.36092047 4.00000000 18.00000000 0.23512803 1425.000000 5.804945 PROFILE 105 13.5353128 176.69863370 86.00000000 14.7400000 0.25581526 1548.180000 7.419064 DATE 59 17.3	55,8 3,1
DATE 127 16.37007874 10.47430958 1.00000000 33.00000000 0.92944468 2079.0000000 109.711161 PROFILE 127 382.58055118 251.39535531 12.00000000 783.0000000 22.30773050 48589.000000 63199.624672 PROFILE 127 100.02511811 3.06173675 95.0000000 783.0000000 0.711835228 1690.00000 63199.624672 DATE 105 16.09523810 7.36092047 4.00000000 29.0000000 0.71835228 1690.000000 54.183150 DATE 105 13.57142857 2.40934536 100.0000000 18.0000000 0.72512803 1425.000000 54.483150 TIME 105 13.57142857 2.40934536 105.100000000 18.0000000 0.72512803 1425.000000 54.483150 TIME 105 108.98266667 2.72379588 105.10000000 14.4700000 0.26581526 11548.180000 7.419064 TIME 59 14.00000000 1.25944706 12.00000000 25.00000000 0.48471946 1024.000000 1.862069 PROFILE 59 10.300000000 </td <td>-</td>	-
11HE 127 13.70866142 3.48400901 8.00000000 18.0000000 0.31004316 1741.000000 12.208099 PROFILE 127 382.58035118 251.39535331 12.0000000 783.0000000 2.30773050 48589.000000 63199.624672 TEMP 127 100.02511811 3.08173675 95.00000000 104.99000000 0.31345922 12702.180000 63.497101 LAYER=1 RANGE=5 LAYER=1 RANGE=5 LAYER=1 105 16.09523810 7.36092047 4.00000000 17.2353228 1690.000000 5.4.183150 TIME 105 16.09523810 7.36092047 4.00000000 17.23533739 39465.000000 5.804945 PROFILE 105 13.57142857 2.40934536 100.0000000 18.00000000 0.23512803 1425.0000000 31495.6099780 TIME 105 109.98266667 2.72379588 105.100000000 114.74000000 0.26581526 11548.180000 7.419064 LAYER=1 RANGE=6 LAYER=1 RANGE=6 LAYER=1 1 200000000	
PROFILE 127 382.58055118 251.3953531 12.00000000 783.0000000 22.30773050 48589.000000 63199.624672 TEMP 127 100.02511811 3.08173675 95.0000000 104.9900000 0.37345992 12703.190000 63199.624672 DATE 105 16.09523810 7.26092047 4.00000000 29.0000000 0.71835228 1690.000000 54.183150 DATE 105 13.57142857 2.40934536 10.0000000 18.0000000 0.72512803 1425.000000 5.409445 TEMP 105 105.85714286 176.60963370 86.00000000 10.72533739 39465.000000 3190.669780 TEMP 105 109.8626667 2.7237588 105.10000000 14.47400000 0.26581526 11548.180000 7.419064 TIME 59 17.35593220 3.80001230 11.00000000 25.00000000 0.48471946 1024.000000 14.4400935 TIME 59 410.654237288 91.20899117 253.00000000 59.00000000 0.1839604 836.000000 1.8862069 PROFILE 59 406.54237288 91.20899117<	\$3.9
TEMP 127 100.02511811 3.08173675 95.0000000 104.9900000 0.27345992 12702.190000 9.497101 LAYER=1 RANGE=5 LAYER=1 RANGE=5 LAYER=1 RANGE=5 DATE 105 15.09123810 7.36092047 4.00000000 18.0000000 0.71833228 1690.000000 5.804945 PROFILE 105 375.85714286 176.60963370 86.00000000 17.23533739 39465.000000 3.190.869780 TEMP 105 109.98266667 2.72379588 105.10000000 114.74000000 0.26581526 11548.180000 7.419664	25.4
LAYER+1 RANGE+5 DATE 105 16.09523810 7.36092047 4.00000000 29.00000000 0.71835228 1680.000000 54.183150 TIME 105 13.57142857 2.40934536 10.0000000 18.0000000 0.23512803 1425.000000 5.804945 PROFILE 105 375.8574286 176.6965370 2.72379588 105.10000000 17.22523739 39465.000000 31190.669780 TEMP 105 109.98266667 2.72379588 105.10000000 114.74000000 0.26581526 11548.180000 7.419064	e5,7 3.0
DATE 105 16.09523810 7.26092047 4.0000000 29.0000000 0.71835228 1680.000000 54.183150 TIME 105 13.57142857 2.40934536 10.0000000 18.0000000 0.23512803 1425.000000 5.804945 PROFILE 105 375.85714286 176.6095370 86.0000000 686.0000000 17.23533739 39465.000000 31190.969780 TEMP 105 109.98266667 2.72379588 105.10000000 114.74000000 0.26581526 11548.180000 7.419064 LAYER=1 RANGE=6	
TIME 105 13.57142857 2.40934536 10.00000000 18.00000000 0.73512803 1425.0000000 5.804945 PROFILE 105 375.85714286 176.60963370 86.00000000 17.23533739 39465.0000000 31190.869780 TEMP 105 109.98266667 2.72379588 105.10000000 114.74000000 0.26581526 11548.180000 7.419064 LAYER=1 RANGE=6 LAYER=1 DATE 59 17.35593220 3.80001230 11.00000000 0.49471946 1024.000000 14.4400935 TIME 59 14.00000000 1.25944706 12.00000000 0.49471946 1024.000000 1.8662069 PROFILE 59 406.54237288 91.20899117 253.00000000 590.00000000 0.1839660.000000 8319.0800701 TEMP 59 117.62779661 1.65300421 115.130000000 0.21650471 6940.040000 2.7655830 LAYER=2 RANGE=1 LAYER=2 RANGE=1	
PROFILE 105 375.85714286 176.60963370 86.00000000 686.00000000 17.23533739 39465.000000 31190.869780 TEMP 105 109.88266667 2.72379588 105.10000000 114.74000000 0.26581526 11548.180000 7.419064 LAYER=1 RANGE=6	45.1
TEMP 105 109.98265667 2.72379588 105.10000000 114.74000000 0.26581526 11548.180000 7.419064 DATE 59 17.35593220 3.80001230 11.00000000 25.00000000 0.49471946 1024.000000 14.4400935 TIME 59 14.0000000 1.25944706 12.00000000 16.00000000 0.16396604 825.000000 1.5862069 PR0FILE 59 406.54237288 91.20899117 253.00000000 590.00000000 11.87439923 23986.000000 8319.0800701 TEMP 59 117.62779661 1.66300421 115.13000000 121.29000000 0.21650471 6940.040000 2.7655830 LAYER=2 LAYER=1 Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4"Colspan="4">Colspan="4"Colspan="4">Colspan="4"Colspa="4"Colspa="4"Colspan="4"Colspa="4"Colspan="4"Colspa=	17.7
LAYER=1 RANGE=6 DATE 59 17.35593220 3.80001230 11.00000000 25.00000000 0.49471946 1024.000000 14.4400935 TIME 59 14.00000000 1.25944706 12.00000000 16.00000000 0.18396604 826.000000 1.3862069 PROFILE 59 406.54237288 91.20899117 253.0000000 590.00000000 11.87439923 23386.000000 8319.0800701 TEMP 59 117.62779661 1.66300421 115.13000000 121.29000000 0.21650471 6940.040000 2.7655830 LAYER=2 RANGE=1 LAYER=2 RANGE=4 DATE 222 21,12612613 13,20846919 1,000000000 0.88649441 4690.00000 174.46366	46,1
DATE 59 17.35593220 3.60001230 11.00000000 25.00000000 0.49471946 1024.000000 14.4400935 TINE 59 14.0000000 1.25944706 12.00000000 16.0000000 0.16396604 836.000000 1.8662069 PR0FILE 59 406.54237288 91.20899117 253.00000000 590.00000000 11.87439923 23986.000000 8319.0800701 TENP 59 117.62778661 1.66300421 115.13000000 121.2900000 0.21650471 6940.040000 2.7655830 LAYER=2 RANGE=1 LAYER=2 RANGE=1 DATE 222 21.12612613 13.20846919 1.00000000 36.00000000 0.88649441 4690.00000 174.46366	=
TINE 59 14.00000000 1.25944706 12.00000000 16.00000000 0.16396604 826.000000 1.5862069 PR0FILE 59 406.54237288 91.20899117 253.0000000 590.00000000 11.87439923 23986.000000 8319.0800701 TENP 59 117.62779661 1.66300421 115.13000000 121.29000000 0.21650471 6940.040000 2.7655830 LAYER-2 RANGE*1 LAYER-2 RANGE*1	
PR0FILE 59 406.54237288 91.20899117 253.00000000 590.00000000 11.87439923 23946.000000 8319.0800701 TENP 59 117.62779661 1.66300421 115.13000000 121.29000000 0.21650471 6940.040000 2.7655830 LAYER=2 RANGE=1 DATE 222 21.12612613 13.20846919 1.00000000 26.00000000 0.88649441 4690.00000 174.46366	21.0
TENP 59 117.62779661 1.6E300421 115.13000000 121.29000000 0.21650471 6940.040000 2.7655830 LAYER=2 RANGE=1	22.4
LAYER=2 RANGE=1	1.4
DATE 222 21, 126 136 13 13, 208 469 19 1, 00000000 36, 0000000 0, 886 49 441 4690, 00000 174, 46366	
	62.
	92.
	64.
PROFILE 222 492.15315315 318.09428860 1.0000000 864.0000000 21.34809079 109258.00000 101183.97644 TEMP 222 70.05594595 5.44692447 56.15000000 78.13000000 0.36557363 15552.42000 29.66899	7.
LAYER-2 RANGE-2	
	49.
DATE 222 18.21821822 8.5447440 1.60000000 0.57774491 2943 000000 74 101198	64.3
TIME 222 13.25675676 8.60820530 1.0000000 24.0000000 0.5777487 847.000000 46102.438241 PRDFILE 222 426.44594595 214.71478347 8.0000000 857.0000000 14.41071271 94671.000000 46102.438241	50.3
TEMP 222 80.99915315 3.72174176 70.45000000 88.47000000 0.24978695 17981.590000 13.851362	4.5

					SAS		3:0	2 FRIDAY, MAY 8.	1987
VARIABLE	. N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAX1MUK VALUE	STD ERROR Of MEAN	SUN	VARIANCE	C.V
			,222	LAYER	2 RANGE=3			**************	
DATE	129	19.04651163	10.40572293	1.00000000	36.00000000	0.91617282	2457.000000	108.279070	54.63
TIME	129	14.2558 1395	5,24147980	7.00000000	22.00000000	0.46148656	1839.000000	27.473110	36.76
ROFILE	129		248.81521514		855.00000000	21,99500326	57711.000000	62407.641715	55.84
ENP	129	88,69054264	4.39956768	79.42000000	BB.53000000		11441.080000	19.356196	4.9
	********	****************		LAYER	*2 RANGE=4				
ATE	127	16.37007874	10.47430958	1.00000000	33.00000000	0,92944468	2079.000000	109.711161	42.CB
TINE	127	13.70866142	3.49400901	8.00000000	19.00000000	0,31004316	1741.000000	12.208099	25.4
PROFILE	127	382.59055118	251,39535531	12.00000000	763.000000000	22.30773050	48589.000000	63199.624672	65.7
TEMP	127	96.76015748	4.37253876			0.38800007		19.119095	4.5
				LAYER	=2 RANGE=5			*****	
DATE	105	16.09523810	7.36092047	4.00000000	29.00000000	0.71835228	1690.000000	54.183150	45.7
TIME	105	13.57142857	2.40934536	10.00000000	18.0000000		1425.000000	5.804945	17.7
PROFILE	105	375.857 14286	176.60965370	86.00000000	686.00000000	17,23533739		31190.069780	45.9
EMP	105	105.23638095	3,45943752	95.79000000	111.45000000	0.33760653	11049.820000	11.967708	3.2
				LAYER	-2 RANGE-6				
DATE	59	17.35593220	3.40001230	11.00000000	25.00000000	D.49471946		14.4400935	21.8
TIME	59		1,25944706	12.00000000	16.00000000	0,16396604	826.000000	1.5662069	8.9
PROFILE		406.54237288	91.20899117		890.00000000		23986.000000		22.4
TEMP		112.26847468		109.07000000		0.25019090		3.6931338	1.7
		``		LAYER	-> RANGE=1				
DATE	222	21,12612613	13,20846919	1.00000000	36.00000000		4690,00000	174.46366	62.1
TIME	272	9.12612613	8,45067361	1.00000000	24.00000000	0.56717208		71.41388	82.5
PROFILE	222	492.15315315	318.09428860	1.00000000	\$64,00000000	21:34909079	109258.00000	101183.97644	64.6
TEMP	222	71.90617117	5.74419638	57.80000000	80.77000000	0.38552522	15963, 17000	32.89579	7.1
				LAYES	1+3 RANGE=2	*****			
DATE	222	18.21621622	8.94417620	1.000000000	36.0000000			79.898288	49.
TIME	222	13.25675676	8.60820530	1.00000000	24.00000000	0.57774491		74.101198	64.1
PROFILE	222		214.71478347	8.00000000				46102.438241	50.3
TEMP	222	82.45184685	4,92693959	67.13000000	91.26000000	0.33067453	18304 . 3 10000	24.274734	5,
********	********	********		LAYEI	R=3 RANGE=3				
DATE	129	19.04651163	10,40572293		36.00000000	0.91617282			54.
TIME	129	14.25581395	5,24147980	7.00000000	22.00000000	0.46148656	1839-000000	27.473110	36.
PROFILE	129	447.37209302	249.81521514	10.00000000		21.99500326		62407.641715	55.4
TEMP	129		6.65060751			-	11313.250000	44.230580	7.
				' LAYE			•		
DATE	127	16.37007874		1.00000000		0.\$2944468			63.1
TIME	127		3.49400901	8.00000000		0.31004316	1741.000000	12.208099	25.4
PROFILE	127	362.59055118	251,39535531	12.0000000	783.00000000	22.30773050	48589.000000	63199.624672	. 65.7
	127	83.64275591	6.08689402	82.88000000		0.54012450			£.5

VARIABLE	N	MEAN	STANDARD DEVIATION	NINTMUH	MAXIMUN VALUE	STD ERROR OF HEAN	SUM	VARIANCE	Ç.V.
		· · · ·						1	· ·
				LAYER	-3 RANGE-5				*********
DATE	105	16.09523810	7,36092047	4.00000000	29.00000000	0.71835228	1690.000000	54.183150	45.734
TIME	105	13.57142857	2.40934536	10,00000000	18.00000000	0.23512803	1425.000000	5.804945	17.753
PROFILE	105	375.85714286	176.60965370	86.00000000	686.00000000	17.23533739	39465.000000	31190.969780	46.985
TEMP	105	100.84590476	4.43448694	93.35000000	109.47000000	0.43276161	10588.820000	19,664674	4.39
				LAYER	-3 RANGE+6				
DATE	59	17.35593220	3.80001230	11.00000000	25.00000000	0.49471946	1024.000000	14.4400935	21.89
TIME	59	14.00000000	1,25944706	12.00000000	16.00000000	0.16396604	826.000000	1.5862069	8.996
PROFILE	59	406.54237288	91,20899117	253.00000000	590.00000000	11.87439923	23986.000000	8319.0500701	22.435
TEMP	59	107.21728814	2.44662881	103.20000000	111.07000000	0.31852394	6325.820000	5,9859925	2.28
							÷		

SAS

3:02 FRIDAY, MAY 8, 1987


.....

3:02 FRIDAY, MAY 8, 1987 10

SAS TABLE OF RANGE BY LAYER

RANGE LAYER

FREQUENCY PERCENT ROW PCT				
COL PCT	1	2	3	TOTAL
PROFILE 1	222	222		
	8.36	8.56	222 8.56	666 23.69
1	33.33	33,33	33.33	49.49
	25.69	25.69	25.69	
PROFILE 2	222	222	222	666
	8.56	8.56	8.56	25.69
	33.33	33.33	33.33	
	25.69	25.69	25.69	
PROFILE 3	129	129	129	387
	4,98	4.98	4.98	14 93
	33.53	33.33	33,33	
	14.93	14,93	14.90	
PROFILE 4	127	127	127	381
	4.90	4.90	4.90	14.70
	33.33	33.33	33.33	
	14.70	14.70	14.70	
PROFILE 5	105	105	105	315
· · ·	4.05	4.05	4.05	12.15
	33.33	33,33	33.33	
	12.15	12.15	12,15	
PROFILE 6	59	59	59	177
	2.28	2,28	2.28	6.83
	33.33	33.33	33.33	
	6.83	6.83	6,83	
TOTAL	864		864	2592
	33.33	33.33	33.33	100.00

