Laboratory Evaluation of
Fabrics for Reducing Reflection
Cracking

1983

Texas Transportation Institute



Laboratory Evaluation of Fabrics
for
Reducing Reflection Cracking

by

Joe W. Button
Associate Research Engineer

Jon E. Epps
Research Engineer

Robert L. Lytton
Research Engineer

Interim Report RF 3424-3

Prepared for

Mirafi Inc.

by

Texas Transportation Institute
Texas A&M University
College Station, Texas

January, 1983







Prologue

Said the pavement to the fabric
"Go 'way, nothing is lacking,"
The fabric replied,

"Swallow your pride,

I'11 better your ride,

I'm here to keep you from cracking."
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EXECUTIVE SUMMARY

Increased emphasis on rehabilitation of existing pavements has
developed a particular interest in pavement overlay systems that will
retard reflection cracking. Fabrics in combination with asphalt concrete
overlays is one method that offers promise in reducing or delaying
reflection cracking.

Laboratory experiments were conducted to establish the mechanisms
responsible for the performance of fabrics as effective reflection crack
arrestors and determine fabric properties which provide the desired field
performance. The laboratory testing program includes testing of fabrics

and fabric-mixture systems to determine the following:

—
.

Asphalt content of fabrics at saturation,

2. Temperature - shrinkage characteristics of fabrics,
Adhesive strength between pavement and fabric,

Shear strength of old pavement-fabric-new overlay interface,

Flexural fatigue properties of fabric-mixture system,

Sy o1 B~ W

Resistance to thermal reflection cracking (overlay tester) and

7. Tensile properties of fabric-mixture system.

Some of the tests used to describe the above parameters were developed
in the course of this research.

Several properties of the fabrics were determined by Mirafi Inc and
are included herein. Fabric properties measured include grab strength,
grab elongation, Mullen burst, free shrinkage, and shrinkage force.

Fabric properties were compared to laboratory test results and some

significant correlations were found.




Asphalt content of fabrics at saturation was determined by soaking
the fabric in hot asphalt cement, placing it between two absorbent papers,
then pressing out the excess asphalt using a hot iron. Asphalt contents
at saturatioh ranged from 0.03 to 0.33 gallons per square yard (0.00013 to
0.0015 m3/m2). With this knowledge about the fabric and similar infor-
mation about the pavement surface, Equation i may be used to obtain pave-

ment tack coat quantities:

Qg = 0.08 + 0, *Q ’ (Equation 1)

where

Qd = design tack quantity, ga]/yd2

fabric asphalt saturation content, ga]/yd2

O
2]
1]

correction based on asphalt demand of old surface, ga]/yd2

LO
I

0.08 is a correlative factor based on field experience for
overlays with no fabric.

Linear shrinkage was determined by soaking the fabrics in hot asphalt
then simply measuring the change in dimensions. The temperature of 250°F
appears to be critical, above which significant shrinkage is exhibited in
most fabrics.

The construction cracking test was devised to determine if fabric
shrinkage could cause early cracking in a new overlay. In the presence
of wrinkles or cuts in certain fabrics, cracks may appear in a thin over-
lay within less than one hour. Techniques to minimize these adverse
effects are given herein.

Peel strength, a measure of adhesive strength between a fabric and

a tacked pavement surface, was quantified. Adequate adhesion between the
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fabric and the old pavement surface is important during construction to
prevent the fabric from "rolling up" or "wrinkling" under construction
equipment. Surface characteristics of a fabric as well as quantity and
grade of asphalt cement tack can affect peel strength. To date, an
acceptable Tevel of shear strength cannot be established since there is
no correlation between laboratory measurements and field requirements.

Interface shear strength was measured by using a test method developed
to simulate the braking action of a wheel on a pavement. The apparatus
induced shear stresses within a test specimen at the fabric-pavement
interface. From a performance standpoint, it is desirab]e to have
adequate shear strength at the old pavement-fabric interface to prevent
slippage failures. Test results indicate fabrics will not compound over-
lay slippage problems.

Fatigue cracking of pavements is caused by-repetitive wheel loads
and will appear as alligator cracks in the wheel path. Flexural fatigue
characteristics of asphalt concrete containing fabrics were compared
with a similar mixture containing no fabric. Test results indicate that
when a fabric is placed within a specimen to withstand a portion of the
tensile load fatigue performance can be improved. Those fabrics cdpab]e
of holding more asphalt give best fatigue results.

Resistance to thermal reflection cracking was determined using the
"overlay tester". This machine was designed'to simulate the cyclic dis-
placements wifhin a pavement due to periodic thermal variations. Laboratory
test data indicates all the fabrics studied will reduce thermal reflection
cracking of asphaltic concrete,

Tensile properties of the fabric-mixture system were determined from




uniaxial tensile tests. Results of these tests can be used to define the
material's stress-strain behavior and predict thermal cracking. Indi-
cations are that the use of fabrics will impfove tensile strength and
strain at failure of asphalt concrete.

Increased tack coat quantity appears to énhance-performance for most
of these taboratory tests. The reason for this correlation is unclear at
this time and should be studied from a more fundamental basis.

Existing field data is summarized and briefly discussed which includes
systems other than fabrics used to retard reflection cracking. The basic
conclusions include the following: (1) fabrics perform well .in mild
climates (2) fabrics are most effective in arresting alligator-type
cracking (3) performance of fabrics is questionable when placed over
thermally cracked pavements and (4) for flexible pavements with alligator
cracking a fabric with one inch of asphalt concrete will perform about
equivalent to two inches of asphalt concrete overlay. However, because
of the sketchy nature of existing data, more field performance information
will be required prior to stating these conclusions with confidence.

' Ecohomics of several alternative methods used to reduce reflection
cracking are considéred. First costs and Tife cycle analysis techniques
are used to compare several different rehabilitation strategies including
(1) new asphalt concrete (2) recycled asphalt concrete (3) chip seal
coat (4) heater-scarification (5) asphalt ~rubber interlayer and
(6) fabric interlayer. Major competition for fabrics has been identified,
however, relative performance needs to be firmly established for various
pavement conditions. |

Finite element theory and fracture mechanics are applied to the over-
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lay test and direct tension test results. Fracture properties of asphalt
concrete can be altered substantially by the inclusion of fabrics. From
this analysis, it appears that best performance may be obtained by placing
a level-up course on the old pavement prior to the placement of the fabric
and the overlay.

Generally, laboratory investigations of fabrics incorporated into
asphalt concrete specimens have shown improvements in tensile properties,
increased fatigue performance and a reduction in crack propagation rate
and there is evidence to indicate fabrics will not compound overlay
slippage problems. A review of several existing field studies of methods
used to reduce ref]ection cracking reveals fabrics to be.a competitive
product and further that fabrics will reduce pavement maintenance and

extend service life.
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INTRODUCTION

The major portion of highway pavement expenditures in the United States
during the next 20 years will be for reconstruction, rehabilitation and
maintenance of our existing facilities rather than construction of new
facilities. This emphasis on reconstruction, rehabilitation and
maintenance has increased research and development efforts aimed at
pavement overlay systems that will eliminate, reduce or delay cracks from
reflecting from the old pavement through the new overlay. The use of
fabrics in combination with asphalt concrete overlays is one of several
promising systems for reducing or delaying reflection cracks.

In an attempt to further define the performance of fabrics as effective
reflection crack arrestors, a cooperative research program was initiated
between Mirafi Inc and Texas A8M University in the fall of 1976. The -
objectives of the research program are given below:

1. Establish the mechanisms responsible for the performance of
fabrics as effective reflection crack arrestors,

2. Define conditions (subgrade conditions, existing type of pavement,
overlay thickness, environmental conditions) under which Mirafi is an
effective crack arrestor,

3. Determine fabric properties which provide the desired field
performance under a variety of conditions and

4., Define and delineate satisfactory field installation procedures
for utilizing Mirafi as part of an overlay system to reduce or prevent

reflection cracking.

Initial research efforts were aimed at objective No. 4 and resulted

in the publication of a report titled "Mirafi Fabric Tack Coat Requirements




for Asphalt Overlays" (1). This report provides the engineer with a
method for selecting the type and amount of tack coat to use in the field.
The design method is based on Tlaboratory and field results developed to a
large extent under contract with Celanese.

The second major research effort was concerned with special field
problems including early cracking of overlays placed on fabrics and an
investigation of potential slippage problems of airfield pavement overlays
made with fabrics. Laboratory tests were developed to help identify
parameters which contribute to early cracking of fabric overlays. Fabric
shrinkage tests were conducted by both Mirafi Inc and Texas A8M University
and a "construction crack test" was developed. Results from these tests
illustrate the importance of using "low" shrinkage force fabrics and the
importance of proper construction techniques to reduce fabric wrinkles.

The investigation of potential slippage problems included the
development of a special "airport shear" test to determine the shear
strength of the interface between the fabric and the old asphalt concrete
and the new asphalt concrete overlay. Computer programs were also
utilized to calculate the magnitude of the shear stress_at the interface.
Results of this study have been published in a report titled "Aspha]f
Overlays with Mirafi Fabric - The Slippage Question" (2). .

Objectives 1, 2 and 3 have been met in part by a combination of
laboratory testing and field evaluation. Results of the laboratory testing
program are contained in this report fogether with a summary of the field
performance of fabric test sections placed in several states. Field
performance information has been summarized on over 15 experimental

projects throughout the United States. The laboratory testing program




includes testing of fabrics to determine the following properties:

1.

~ w ~N
. . .

6.
7.

Asphalt content at saturation,

Temperature shrinkage characteristics,

Adhesion strength between the pavement and fabric,

Shear strength of old pavement-fabric-new overlay interfaée,
Tensile strength of fabric-mixture system, |
Flexural fatigue properties of fabrié—mixture system and

Resistance to reflection cracking (overlay tester).

Properties of the asphalts, aggregates, asphalt concrete mixtures

and fabrics will be.summarized prior to the presentation of test results.







MATERIALS

The asphalt cements and aggregates uti]izéd to fabricate asphalt
concrete test specimens are currently used as laboratory standards in
the Tekas A&M University materials testing laboratory (3). Standard
mixture properties for various asphalt-aggregate combinations are
reported in Reference 3. Fabric properties were supplied by Mirafi

Inc. Detailed properties are discussed below.

Asphalt Cements

Three asphalt cements were utilized in this study. A1l asphalts were
obtained from the American Petrofina refinery located near Mt. Pleasant,
Texas. The properties of the viscosity graded asphalt cements are shown
on Table 1. The AC-10 asphalt cement was utilized for all asphalt
concrete mixtures while the AC-5, AC-10 and AC-20 asphalt cement were
utilized in tests to determine adhesion strength between the pavement and
the fabric. The asphalts utilized are laboratory standard asphalts at

the Texas A&M University materials laboratory.

Aggregates

A subgrounded, siliceous gravel and a crushed limestone are utilized
as laboratory standard aggregates at the Texas A&M University materials
Tlaboratory.

The subgrounded, siliceous gravel was obtained from a Gifford-

Hi11 plant located near the Brazos River at College Station, Texas. The
crushed limestone was obtained from the White's Mines quarry located near

Brownwood, Texas




TABLE 1.

Summary of Asphalt Cements.

Grade of Asphalt AC-5 AC-10 AC-20
Viscosity @ 77°F (25°C), poise 2.8 x 10° | 5.8 x10° | 3.0 x 10°
Viscosity @ 140°F (60°C), poise 468 1576 1989
Viscosity @ 275°F (135°C), poise 2.34 3.76 4.19
Penetration @ 39.2°F (4°C), dmm 82 26 18
Penetration @ 77°F (25°C), dmm 189 118 63
Penetration Ratio, % 43 22 29
R & B Softening Pt, °F (¢C) 104 (40) 107 (41.7) 120 (48.9)
Specific Gravity @ 60°F (16°C) 1.017 1.020 1.034
Flash Point (COC), °F (°C) 580 (304.4) | 615 (323.9) | 578 (303.3)
Solubility in C2H3C13, % 99.8 99.9 99.9
Spot Test Negative Negative Negative
Thin-Film Oven Test,

Residue Properties
Viscosity @ T40°F (60°C), poise 1135 3054 5151
Penetration @ 77°F (25°C), dmm 103 68 38
Ductility @ 775F (25°C), cm 150 150 150




Standard sieves (ASTM E-11) were used to separate the aggregates into
fractions sized from 3/4 inch to minus No. 200 mesh. Photographs of the
sized gravel and Timestone are shown on Figures 1 and 2. Prior to mixing
with asphalt, the various aggregate sized were recombined according to the
ASTM D 3515-77 5A grading specification. The aggregate gradation as well
as the upper and lower limits of the specifications are shown in Figure 3.
Standard tests were conducted to determine various physical properties of
these aggregates such as specific gravity, absorption capacity, abrasion
resistance, and unit weight. One additional test (4) was conducted to
estimate the optimum asphalt content. Physical properties of the gravel

and limestone aggregates are shown on Table 2.

Mixtures

Mixtures of these aggregates and the AC-10 asphalt cement were prepared
at various quantities of asphalt cement and tested using Marshall and Hveem
stability tests to determine the optimum asphalt contents. (Details of
these tests can be found in Reférence 3). Based on these tests, optimum
asphalt contents were selected. Properties of the mixtures at optimum
asphalt content are given on Table 3. The limestone mixture was utilized
to evaluate the shear strength of the fabric-old pavement-overlay interface
while the gravel mixture was used for all other mixtures utilized in the

study.

Fabrics

Eight fabrics, labeled A, B, C, D, E, F, G and H, supplied by Mirafi
Inc have been tested. Basic properties of these fabrics are shown on

Table 4. Fabric properties were determined in the Mirafi Inc laboratory.
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Figure 1. Rounded Gravel Aggregate Showing Size and
Shape of Particles.
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Figure 2. Crushed Limestone Aggregate Showing Size and
Shape of Particles.
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TABLE 2. Physical Properties of Aggregates.

~ Physical Test Aggregate Test Results
Property Designation Grading Gravel | Limestone
Bulk Specific Gravity 2.621 2.663
Bulk Specific Gravity (SSD) ASTM C 127 Coarse Material* 2.640 2.678
Apparent Specific Gravity AASHTO T 85 2.672 2.700
Absorption, percent 0.72 0.7
Bulk Specific Gravity 2.55] - 2.537
Bulk Specific Gravity (SSD) ASTM C 218 Fine Materjal** 2.597 2.597
Apparent Specific Gravity AASHTO T 84 2.675 2.702
Absorption, percent 1.8 2.2
Bulk Specific Gravity ASTM C 127 Project Design 2.580 2.589
. os . & C 128 Gradation
Apparent Specific Gravity AASHTO T 84 2.671 2.701
Absorption, percent & T 85 1.3 1.56
Abrasion Resistance, ASTM C 131 Grading C 19 23
percent loss AASHTO T 96
Compacted Unit Weight ASTM C 29 Project Design 129 122
pcf AASHTO T 19 Gradation
Surface Capacity, percent Centifuge Fine Material*** 3.0 4.1
by wt. dry aggregate Kerosene
Equivalent
Surface Capacity, percent 0i1 Equivalent 93/8 inch to + 1.8 2.3
oil retained by wt. agg. No. 4
Estimated Optimum Asphalt C.K.E. and 0i1 | Project Design 4.7 5.5

Content, percent by wt.
dry aggregate

Equivalent

Gradation

*Material retained on No. 4 sieve from Project Design Gradation.

**Material passing No. 4 sieve from Project Design Gradation.

10



TABLE 3. Mixture Properties at Optimum Asphalt Content.

Property Rounded Gravel Crushed Limestone
Design Asphalt Content 3.8 4.5
percent by wt. aggregate

Marshall Specimens

Unit Weight, pcf (gm/cc) 152(2.44) 153(2.45)

Air Void Content, 2.1 3.0

VMA, percent 9.1 10.5

VMA Filled w/Asphalt, 80 78

percent

Marshall Stability, 1bs(N) 1270(5650) 2740(12,200)

Marshall Flow, .01 in.(mm) 7(1.8) 11(2.8)
Hveem Specimens

Unit Weight, pcf (gm/cc) 151(2.42) 154(2.47)

Air Void Content, 2.9 2.5

percent
VMA, percent 9.7 9.1
VMA Filled w/Asphalt, 76 81
percent

Hveem Stability, percent 25 54

Resilient Modulus, psi(kPa) 570,000(3.9x106) 590;000(4.1x106)

Elastic Modulus, @ 39,000(0.27x10%) 26 ,000(0.18x10°)

Failure *, psi (kPa)

*From Splitting Tensile Test.
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DESCRIPTION OF TESTS AND SPECIMEN FABRICATION

Evaluation of field performance consumes considerable time and is
difficult to contrd]. Therefore, laboratory apparatus were designed and
developed to mechanistically evaluate fabrics in a logical sequence of
tests. These new test methods were developed to simulate field loading
conditions and hence are capable of evaluating over}ay systems on a
relative basis. First, fabrics were evaluated to see if they could
withstand temperatures encountered in hot mix pavemeﬁt cbnstruction; if
s0, the appropriate quantity of asphalt tack was determined. The specimens
were fabricated and tested in controlled atmospheres to define the effects
of fabrics in overlay slippage, and to separately evaluate the performance
of fabrics in the reduction of fatigue and thermal cracking.

The test results are presented in this logical sequence which is not

considered to be the order of importance.

Saturation Test

Three test methods have been investigated for prediction of fabric
saturation (1). The test method selected for use involves the soaking
of a piece of fabric 8 x 8-inches, (200 x 200 mm) in AC-10 asphalt cement
at 250°F for 1 minute. The saturated fabric is allowed to cool and then
pressed with a hot iron between two absorbent papers to remove the excess
asphalt. This method produces a uniformly appearing saturated fabric
without an excess of asphalt cement on any area of the fabric.

Fabric asphalt saturation content is one parameter that is utilized

to determine field tack coat quantities for adequate adhesion between

pavement layers. The tack coat quantity may be obtained from the equation
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shown below:

O4 = 0.08 + Qg j_QC
(Equation 1)
where:
Qd = design tack coat quantity, gallons per square yard,
QS = fabric asphalt saturation content, gallons per square yard.
c© correction to tack coat quantity based on asphalt demand

of old surface, gallons per square yard.

The quantity, 0.08 gallons per square yard is based on field experience for
overlays with no fabric. This equation, developed earlier in this research
program (1), was utilized to determine asphalt tack coat quantities for
laboratory testing purposes. A value of +0.02 was selected for QC based

on the surface conditions of the laboratory samples.

Fabric Shrinkage

Two laboratory techniques were developed to identify the effect of
temperature on fabric length change and stability.

Construction Cracking Test. The construction cracking test involves

the placement of a hot asphalt concrete mixture over a fabric which has
been placed in a rectangular mold. This laboratory test was developed to
identify possible causes of cracking associated with the hot asphalt
concrete during the early 1ife (within 1 day) of the overlay. The fabric
properties of free shrinkage and shrinkage force (Table 4) are
indicators ofltemperature—associated cracking probability when fabrics
are utilized in overlay systems.

Two rectangular molds, 48-inches (1220 mm) long by 5 1/2-inches
(140 mm) wide, were fabricated from wood (Figure 4). One mold was

fabricated with a 1/8-inch (32 mm) transverse crack in the bottom near
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the center of the other mold centained mo crack. Ah appropriate quantity of
tack was placed in the bottom of the molds, depending on the requirements

of the fabric. Fabric was placed over the tack coat in one of three
different orientations: (1) control samples - either no‘fabric or smooth
fabric with no wfink]es (2) one 3/8-inch (10 mm) fabric wrinkle near the
center of the mold (wrinkle down in crack when using mold with crack)

(3) fabric cut transversely near the center of the mold. In all cases the
fabric was 5 1/2-inches (140 mm) wide and Tonger than the mold so that it
could be securely fastened to each end of the mold (Figure 4). Hot mix
asphalt concrete was placed in the mold over the fabric and compacted

using a hand tamper with a 5 x 6-inch tamping face. The compacted asphalt
concrete, which ranged in thickness from 3/4-inch to 1 1/2-inch was observed
_ periodically to check for cracking. If cracks did appear in the overlay, it
was usually within 15 minutes after placement and compaction; In some tests
smaller cracks appeared after more than an hour of time elapsed.

Linear Shrinkage Test. This test involves soaking of the fabric in

“asphalt cement to simulate the application of the fabric to the hot tack

coat and/or simu]ate the fabric saturation by tack coat immediately after
placement of a hot asphalt concrete overlay. Four pieces of each fabric with
dimensions of 4 x 4 inches (100 x 100 mm) were submerged in 250°F (121°C)

and 300°F (149°C) asphalt cement. One of the four pieces of fabric was
removed after elapsed times of 1, 5, .15, and 30 minutes and allowed to cool
then measured a]ong.the run of the fabric to determine the effects of heat

on length change as a function of time and temperature.

Peel Strength Tests

Adequate adhesion between the fabric and the old pavement is important
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during construction in order to prevent the fabric from "rolling up"

and/or "wrinkling" under construction equipment. Two types of tests have
been developed to define the adhesion between the old pavement and the
fabric. Details of both test methods can be found in Reference 1 together
with test results on Fabric G in which different types of aéphalt were
utilized as tack coats and tests were conducted over a range of temperatures,
tack coat quantities and test rates.

Fabric tests described herein consist of only the 180 degree

' peel test concrete surfaces. The surface texture of the asphalt concrete

surface as measured by the Silicon Putty Method (6) was 0.022 cubic

3
inches per square inch (0.56 mmﬁo. The portland cement concrete surface
mm-_ 3
texture was 0.024 in3/1n2 (0.61 mmgﬁ. The asphalt concrete was obtained
mm

from a city street in College Station, Texas. The portland cement concrete
specimens were cast and the surfaces prepared in the laboratory. The test
surfaces were 10 inches (250 mm) in length and 2 inches (50.8 mm) in width
A predetermined quantity of asphalt cement (depending on fabric requirements)
at 250°F (121°C) was applied as a tack coat to each test surface.

The quantity of asphalt cement tack applied was varied around the
optimum required for each fabric. Low tack was one-half the optimum and
high tack was twice the optimum. Optimum tack coat was determined using
Equation 1. For tests with high tack coats and hence thicker asphalt films,
masking tape was affixed to the sides of the test specimens to provide a
1ip that prevented the asphalt from flowing off the test surface. While
the asphalt cement was hot, a 10-inch (25 mm) strip of fabric about 25 inches
(635 mm) in length was applied. The fabric was seated by covering it with

waxed paper, placing a foam rubber cushion on top, and applying a 15 1b load
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The test specimens were fastened in a specially prepared frame, on the
Instron Universal Testing Machine, with the loose end of the fabric downward.
The Toose end of the fabric was turned upward and clamped in the grips of
the testing machine (Figure 5). This configuration facilitated a 180 degree
peel test. A1l tests were conducted as constant disp]acemént rates of
either 5 or 20 inches per minute (137 and 508 mm/min) at a temperature

of 122°F (50°C).

Interface Shear Strength

Adequate shear strength must be attained or pavemént slippage failures
will occur (2). Slippage failures, typically crescent shaped, are associated
with high shear stréss areas of a pavement and are most likely to occur
during braking or turning operations when ambient temperatures are high.

A test method was developed which stimulates the braking action
of a wheel on an overlaid pavement and used to determine the shear strength
of the fnterfaces at the old pavement-fabric-new overlay. Tests were
conducted at 68, 104, and 140°F (20, 40, 60°C, respectively) at a deforma-
tion rate of approximately 13 inches per second (330 mm/sec) with the
appératus shown in Figure 6 (2). A static vertical load of 400.pounds (1780 N;
was applied to the 3x3x2-inch (75x75x50 mm) samples (67 psi of 460 kPa
vertical pressure). Specimens at 140°F would not support the vertical load
and were thus tested with no appreciable vertical load.

Samples for testing were fabricated in the laboratory with the laboratory
standard limestone aggregate and 4.5 percent asphalt cement (AC-10). Twenty-
four 3x3x14-inch (75x75x375 mm) asphalt concrete beams were compacted in
three 1-inch (25 mm) Tlayers at 250°F (121°C). Following compaction of the

first two layers, the incomplete specimen was allowed to cool to less than
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FIGURE

5.

Test Specimen in Position for Peel Strength Test.
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FIGURE 6.  Schematic of Shear Test Apparatus .
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100°F (38°C). Then the appropriate quantity of tack coat (depending on
individual fabric requirements) was applied evenly to the upper surface,
a 3x15-inch piece of fabric was applied over the tack coat, and the third
one-inch layer of asphalt concrete was compacted. The beams were then

sawed transversely to yield 3x3x2-inch shear test specimens.

Flexural Fatigue

Beam fatigue tests were performed to provide information for prediction
of the fatigue life of pavements. Fatigue cracking of pavements is caused
by repeated wheel loads and will appear as cracks in the wheel path. These
cracks will have a pattern similar to "chicken wire" or "alligator skins".

Computer models are available to predict pavement fatigue life.

Required input includes elastic properties of the pavement materials and
stress versus fatigue 1ife or strain versus fatigue life relationships
which can be obtained from laboratory beam fatigue tests.

Flexural fatigue characteristics of aspha]f concrete mixtures with
and without_fabric were determined with the test equipment shown in Figure 7.
This equipment is a larger scale model of a device originally developed by
Deacon (8). Loads are applied at the third points of the beam, four inches
on center, with one inch wide steel blocks. The applied load is measured
by a load transducer and continuously recorded on an oscillographic recorder.
Specimen deflection is measured at the center using a linear variable
differential transforher (LVDT) and é]so recorded on the two channel

osci]]ographic recorder. The machine is operated in the load control mode

with a half-sine wave form at a frequency of 100 cycles per minute
(1.67 Hz) and a 16ad,duration of 0.1 seconds. The test specimens

_are oriented such that the fabric is subjected to tensile stress
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during the 1oading phase. A reverse load is applied at the end of each
Toad cycle to insure that the specimen will return to its original at-rest
position after each cycle. It is neceséary to periodically tighten the
spécimen Toading and holding clamps as a result of plastic flow of the
asphalt concrete. Upon rupture of the specimen, limit switches shut off
the testing machine, and a cycle counter indicates the number of cycles to
complete rupturé.

Specimen Fabrication Techniques. Two methods of beam fabrication

were investigated. Both methods were attempts to realistically simulate
pavement overlay operations with fabrics. The first beam fabrication method
utilized the following technique:

1. Compaction of a 3 x 3 15-inch (76 x 76 x 30-mm) asphalt concrete
beam,

2. Extruding the beam from the mold and allowing the beam to cool,

3. Sawing and retaining the top and bottom 3/4-inch (19-mm) of
the beam.

4. Artificially weathering the outer surface (unsawed face) with soapy
water and a stiff brush,

5. Applying an appropriate quantity of asphalt cement tack coat,

6. Placing a 3 x 15-inch (76 x'380-mm) piece of fabric on the tacked
beam surface,

7. Placing the 3/4-inch prepared beam into the beam mold, and

8. Compacting two 1 1/8-inch (29-mm) layers of asphalt concrete over
the fabric.
This method of beam fabrication was time consuming and produced samples

with non-uniform asphalt absorption into the fabric.
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The second beam fabrication method utilized the following technique:
1. Compaction of a 3/4-inch (19-mm) layer of asphalt concrete
2. Applying a 3 x 15-9-inch (76 x 380-mm) of‘presoaked fabric
3. Compacting two 1 1/8-inch (29-mm) layers of asphalt concrete
over the fabric.
The presoaked fabric was obtained by placing the fabric in an AC-10 asphalt
at 250°F}(121°C) for 1 minute. The fabric was then repeatedly pressed

between absorbent paper until the design asphalt content (as determined from

Equation 1) was'obtained. The second method of fabrication produced
uniform asphalt absorption into the fabric and was less time consuming.
The asphalt concrete mixture utilized in the fatigue study was made
with the 1aboratoryAstandard subrounded gravel and 3.8 percent AC-10
asphalt cement. The asphalt cement and aggregate were mixed at 300°F
(150°C) and molded at 250°F (121°C). A Soil-Test Model CN-425 kneading
compactor with a 3 x 4-inch (7.6 x 10.2 cm) tamping foot was utilized
to apply 35 tamps on the first two layers and 70 tamps on the third layer
of asphalt concrete at a foot pressure of 1,300 pounds (5,800 N). After
placing the three layers of asphalt concrete a leveling Toad of 12,000

4 N) was applied for 1 minute. Following extrusion from

pounds (5.3 x 10
the mold, the beams were allowed to cool to room temperature. The specific
gravity of each sample was determined gravimetrically in air and water
and the air void content was computed. Results are contained on Table D1,
Appendix D.

A review of data presented on Table D1 indicates the beams molded

using the first technique were slightly stiffer than the beams molded

using the second technique (presoaked fabric) while the air void contents

of the beams was nearly identical for both techniques. Examination of the
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coefficient of variation of the fatigue Tlife indicates that a more uniform
result was obtained when the molding procedure used the fabric presoak
technique. However, additional data would have to be developed to make
this statement with a high degree of confidence. From an ease of
fabrication standpoint and from a uniformity standpoint the.second method
discussed using presoaked fabric was utilized.

As stated above all beéms with fabric were fabricated utilizing. the
second method discussed. - Control samples which contained no fabric were
prepared by compacting three equal layers. The first two layers were
subjected to 35 tamps and third layer was subjected to 70 tamps of the
kneading compactor with 110 psi (760 Pa) foot pressure. A Teveling load
of 12,000 1bs (5.3 x 104 N) or 1,000 psi (6.9 kPa) was applied. A1l
samples were aged for a period of at least two weeks at room temperature.

A1l tests were conducted at a temperature of 68°F (20°C).

Resistance to Thermal Reflection Cracking

The "overlay tester” (Figufe 8), developed at Texas A8M University, is
essentially adisplacement controlled fatigue testing machine designed to
initially produce a small crack (due to tension) in a test specimen and
then continue to induce repetitive longitudinal displacements at the base
of the cfack which causes the crack to propagate upward through the specimen.
This process is intended to simulate the cyclic stressing of a pavement
due to periodic thermal variation. Results obtained with this apparatus
should prove very useful in predicting pavement service 1ife extension
effected by systems purported to reduce reflection cracking.

The construction materials as well as the fabrication procedures for

~ the specimens tested in this experiment were identical to.those used in.
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the preparation of the 3x3x15-inch (7.6 x 7.6 x 38 cm) beams tested in
flexural fatigue. Siliceous gravel with a 3.8 percent AC-10 asphalt
and presoaked fabric was utilized in the fabrication of all these
specimens. A1l test specimens with fabric were made using only the
optimum tack rate except those containing Fabric G which utilized three
tack rates (one-half optimum, optimum and twice optimum). Control samples
contained no fabric and were preparéd by compacting three equal layers.
After allowing the test specimens to age at room temperature for at
least two weeks, each specimen was epoxied to two rigid plates; one fixed,
the other regulated to oscillate at a constant displacement of 0.070-inches
and at a rate of 6 cycles per minute. The initial movement was outward
which caused tensile stresses at the center of the specimen. A1l these
tests were conducted at 77°F (25°C). Load was measured by a strain gage
Toad transducer and displacement of the moving plate was monitored by a
linear variable differential transformer (LVDT). Load as a function of
displacement was recorded on an X-Y recorder. An example of recorded
data is given in Figure 9. The length of the crack was periodically
measured on each side of the specimen. The average of the two measure-
ments was used as the crack length corresponding to the given number of
cycles. The machine was allowed to oscillate until complete specimen
failure, that is, until the crack propagated completely through the beam
specimen. Ideally, complete failure would be defined as the cycle at which
the load approached zero, however, with those specimehs containing fabric,
a measurable load was supported by the fabric even after the asphalt concrete

specimen was completely cracked.
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Direct Tension Tests

Results of tensile tests can be used to define a material's stress-
strain behavior to failure, predict thermal cracking as well as provide need-
ed information for crack prediction models based on fracture mechanics
theory (Appendix F).

In an effort to determine the effects of fabric on the tensile
propertfes of asphalt concrete, uniaxial tensile tests (Figure 10) were
conducted on specimens containing fabrics as well as control specimens at
a constant displacement rate of 2 inches per minute (5.1 cm/min) and a
temperature of 68°F (20°C).

AT1 specimens were prepared with the laboratory standard gravel and
asphalt cement (AC-10) mixed at 300°F (150°C) and molded at 250°F (121°C).
The first step was to mold a 2 x 3 x 15-inch (50 x 75 x 375 mm) beam using
the modified soi]—test»model CN-425 kneading compactor with a 3 x 4-inch
(75 x 100 mm) tamping foot applying 35 tamps on each of the two 1-inch
layers. After the first one inch layer was compacted, the appropriate
quantity of asphalt cemeht tack coat was uniformly distributed over the
top surface, a 3 x 15~-inch (75 x 375 mm) piece of fabric was applied, and
lastly, a second one inch layer was compacted. Following extrusion from
the mold, the beams were allowed to cool to room temperature. The specific
gravity of each specimen was determined gravimetrically in air and water,
and the air void content was computed. Fach of the six beams made with
different fabrics were cut in half 1ohgitudina]1y, then each half was
sawed into three pieces to u]timate]y,prdduce test specimens approximately

1.5 x 1.5 x 5-inches (38 x 38 x 135-mm) with a strip of fabric near the

center.
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TEST RESULTS

Laboratory test results are presented below. The relative laboratory
performance of different fabric variants (types of fabrics) are evident
from these tests. It is difficult, if not impossible, to directly predict
field performance from these test results; however, the Taboratory tests
that were developed attempt to rea]isticai]y simulate field loading
conditions. The relative performance of fabrics in the field is in all

probability correlatable to their relative laboratory performance.

Fabric Saturation

Fabric saturation contents are shown in Table 5. Asphalt saturation
contents range from a low of 0.03 gallons per square yard (1.3 x 10'4 m3/m2)
(Fabric F) to a high of 0.33 gallons per square yard (1.5 X 10'3 m3/m2)
(Fabric E). Estimates of required tack coat quantities for each fabric
on a surface texture of 0.20 1'n3/1'n2 (0.5 cm3/cm2) (1) are included
in the table. These quantities were utilized as the design asphalt content
for the test specimens prepared in this Taboratory testing program.

Figure 11 has been prepared to illustrate that a simple relationship
does not exist between fabric weight and saturation asphalt content. FEach
fabric should be tested to determine its asphalt saturation content. The
type of fiber (polypropylene, polyester, nylon, etc.), fabric structure,

etc. must be considered to determine a fabrics asphalt retention. Fabric

weight alone does not correlate well with fabric saturation.

Fabric Shrinkage

Two tests were developed and performed to determine the effects of hot

~mix asphalt overlay temperatures on fabric dimensions.
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TABLE 5. Fabric Saturation Quantities and Recommended Tack Coat Quantities.

Saturation Content, Asphalt Tack Coat
gallons per square Quantity, gallons
yard of Fabric per sguare yard
Fabric (m3/m2 x 10-4) (m3/m x 10-4

A 0.04 (1.8) 0.14 (6.3)

B* 0.02 (0.9) 0.12 (5.4)

C 0.04 (1.8) 0.14 (6.3)

D 0.13 (5.9) 0.23 (10.4)

E 0.33 (14.9) 0.40 (18.1)

F 0.03 (1.4) 0.13 (5.9)

G 0.10 (4.5) 0.20 (9.1)

H 0.15 (6.8) 0.25 (11.3)

*This fabric is manufactured with about .09 gallons per square yard of
impregnated asphalt. The quantity shown is the amount of additional asphalt
cement required to saturate the fabric.
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Construction Cracking Test. The test results using the four foot mold

are given in Table 6 for fabrics B, E, F, and G. No shrinkage cracks
appeared in any of the tests conducted using a two foot mold which was

used initially. However, cracks did appear in certain similar tests using
the four foot mold. This indicates the shrinkage forces that accumulated
over a one foot length of fabric on each side of the wrinkle were not
sufficient to cause cracking in the hot overlay. Furthermore, the shrinkage
forces in some fabrics are capable of acting from a distance greater than
one foot to produce cracking in a hot asphalt overlay.

Fabrics E and F, which exhibited very 1ittle shrinkage in the
temperature stability test, did not produce cracks in this test. And
conversely, Fabric B, which exhibited excessive shrinkage in the tempera-
ture stability test, produced the largest cracks and was the only fabric
tested that produced a crack in the 1 1/2-inch (38 mm) overlay. In the
temperature stability test, Fabric G exhibited comparatively Tittle
shrinkage but shrank over a relatively long time period; similarly, in this
test it produced small cracks in the thin overlays and more than hour
elapsed before they appeared. These test results also correlated quite
well with the shrinkage forces generated by the fabrics at 300°F (Table 4).
Those fabrics exhibiting low shrinkage forces (Fabrics E and F) did not
cause cracking in the overlay. The fabric exhibiting a relatively high
shrinkage force (Fabric B) did cause cracking. Fabric G with a moderate
shrinkage force caused small cracks to form.

Although the number of tests were not sufficient to make positive
statements, the following conjectures are made based on test observations:
(1) There was no noticeable difference in crack propagation between

~tests using emulsion and asphalt cement tack coats. .
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TABLE 6.

Construction Cracking Test Results.

OVERLAY OPTIMUM FABRIC
THICKNESS, TACK COAT SHRINKAGE
e | D, | oS L
CRS-2 | AC-5 > gm

3/4 C+W CRACK

B Wood 11/2 C+W CRACK 1303
3/4 CuT LARGE 4

CRACK

3/4 W No
1 1/2 W No

E Wood 1172 cHu No 8
3/4 CuT No
3/4 C+W No
3/4 C+W No

F Wood 3/4 W No :
3/4 CuT No
1 1/2 W No
3/4 C+W SMALL

CRACKS

G Wood 11/2 C+W No 109

3/4 CUT SMALL
CRACKS
3/4 C (No Fab) No
Conrol Wood 3/4 C (Smooth) No NA
3/4 No CRACK No
No Fabric
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(2) The cut fabric allowed slightly more cracking than the wrinkle alone
or the wrinkle in the crack. (3) The thicker overlay was less likely to
crack due to fabric shrinkage. (4) Fabrics with free shrinkage in excess
of about 7% may cause construction cracks. (5) Fabrics with shrinkage
forces in excess of about 100 grams may cause construction cracks.

(6) Fabric-asphalt cement systems with linear shrinkages greater thén

5 percent after soaking in 300°F asphalt for 30 minutes may cause

construction cracking.

Linear Shrinkage Test. These tests were conducted on fabrics

A, B, C, D, E, F, and G. The results are given in Table 7 and plotted
in Figures 12 and 13. Based on several observations a reasonable estimate
of the precision of this data is + 5 percent.

As expected, the higher temperature caused more fabric shrinkage.
The lowest test temperature (250°F) appears to be located near a critical
temperature, that is, below this temperature very Tittle shrinkage occurs,
but above this temperature significant shrinkage occurs in most of the
fabrics. Fabrics E, F, and G, with Tinear shrinkage values of 5 percent
or less after fifteen minutes, have the Towest temperature susceptibility.
Fabric B, the most temperature susceptible fabric tested, as well as C
and G apparently would have continued to shrink after 30 minutes exposure
to the hot asphalt cement. Most of the other fabrics reached a maximum
shrinkage after 30 minutes exposure.

Fabrics A and C which have negligible shrinkage when exposed to 250°F
asphalt cement have significant shrinkage characteristics when exposed

to 300°F asphalt cement. Fabrics E and G show little change in shrinkage

between 250 and -300°F exposure conditions.




TABLE 7.

Linear Shrinkage Test.

FABRIC ASPHALT ELAPSED LINEAR
TYPE TEMPERATURE, TIME, SHRINKAGE ,
oF (°C) MIN. . PERCENT
1 0
5 0
250 15 0
(120) 30 0
A
1 8
5 10
300 15 15
(150) 30 15
1 2
5 3
250 15 5
(120) 30 8
B
1 8
5 13
300 15 20
(150) 30 23 .
1 0
5 0
250 15 0
(120) 30 0
¢ 1 3
5 10
300 15 13
(150) 30 15
1 5
5 8
250 15 8
(120) 30 8
D
1 8
5 10
300 15 13
(150) 30 13
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TABLE 7. C€ontinued.
FABRIC ASPHALT ELAPSED LINEAR
TYPE TEMPERATURE, TIME, SHRINKAGE,
°F (°C) MIN. PERCENT
1
250 15 3
. (120) 30 3
1 0
300 5 0
15 ]
(150) 30 3
1 0
250 5 0
15 0
(120) 30 0
F
! 3
300 5 3
15 3
(150) 30 3
1
: 0
250 0
15 :
(120) 30 >
G
; 5
300 5
15 2
(150) 30 6
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between fabric test properties of free shrinkage and shrinkage force and
the fabric-asphalt property of linear shrinkage. Although only Timited
data are available, a correlation between fabric free shrinkage and fabric-
asphalt linear shrinkage does appear to exist (Figure 14). An apparent
correlation also exists between fabric shrinkage force and fabric-asphalt

Tinear shrinkage (Figure 15).

Significance of Test Results. It is fairly common knowledge that heat

(250°F or more) will cause varying degrees of shrinkage in most currently
available fabrics. This shrinkage may be advantageous at least temporarily,
as the "post-tensioned" fabric would improve the tensile properties of the
system, particularly at Tow strains. The temporary nature of these

benefits are due to stress relaxation in the viscoelastic system.

When wrinkles (or cuts without adequate overlap) are present in a fabric
during an overlay operation, tensile forces caused by fabric shrinkage can
produce a significant displacement of the fabric normal to the wrinkle or
cut. Shrinkage occurs while the asphalt concrete overlay is hot and
withqut appreciable tensile strength; thus, the motion of the fabric dis-
places the hot overlay resulting in a crack in the new overlay along
the wrinkle or cut.

Assume an asphalt concrete has no appreciable tensile strength at
temperatures above 175°F. Depending on ambient temperature, base
temperature and wind velocity, one-inch mat of hot mix asphalt concrete
placed at 300°F (120°C) may require up to 7 minutes to cool to 175°F
(80°C) whereas a 3-inch mat under similar condifions may require up to 37
minutes (5) (See Figures Al through A4, Appendix A). Based on observations
of laboratory experiments, this is adequate time for certain high shrinkage

and high shrinkage-force fabrics to damage an overlay.
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FABRIC SHRINKAGE FORCE AT 300°F*, grams

FIGURE 15.
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Conclusions

1. Shrinkage of fabric adjacent to the underside of an overlay
impart stresses to the overlay.

2. Shrinkage of a fabric with wrinkles can cause immediate crack-
ing of overlay due to opposing (tensile) forces on either side of the
wrinkle.

3. Heat is a detrimental factor: The hotter the overlay material
the greater the shrinkage of "fabrics", therefore, the greater the
stresses or Tikelihood of cracking. There is apparently a relationship
between fabric shrinkage force, temperature, and probability of cracking
an overlay at a fabric wrinkle or joint.

4. When Targe cracks are present in the "old" pavement there may
be a lack of compaction in the overlay along the crack because of the
Tack of support under the overlay. If a wrinkle is present along
this crack, then the low tensile strength of the overlay along the
crack compounds the overlay cracking problem.

5. Fabrics with low shrinkage force minimize problems with
construction cracking.

Recommendations. The following field construction practices are

recommended especially when a low shrinkage force fabric is not used.

1. Minimize wrinkles and/or cuts in fabric during overlay construc-
tion and provide adequate overlap at joints.

2. Roll fabric to insure intimate contact with “old" pavement.

3. Do not greatly exceed optimum tack coat requirements as this
affords a lubricating action to allow fabric movement.

Note: Tack coats below optimum may be detrimental to shear

——strength at the pavement-overlay interface and fatigue 1ife. —
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4. Control overlay laydown temperature toward lower end of

specification.

5. Delay rolling as long as possible to afford compaction after

most fabric shrinkage has occurred.

6. Fi1l cracks in "old" pavement larger than about 0.2-inch prior

to application of fabric.

Peel Strength Test

From a construction standpoint it is important to have sufficient
peel strength to prevent the fabric from rolling up and/or wrinkling
under construction equipment. Thus a relatively high adhesive strength
is preferred. It is not desirable to obtain the desired peel strength
by increasing tack coat quantity beyond that obtained from Equation 1
as this asphalt tack may migrate or bleed through the asphalt concrete
overlay and cause hazardous wet weather driving conditions.

Individual and mean values of peel strength are presented in
Appendix B. Figures 16 through 19 graphically illustrate the relationship
between fack coat quantity, rate of deformation and type of surface
on peel strength.

Under all conditions, Fabrics A and D yielded higher peel strengths
than the other fabrics tested. There is not a common fabric property to
which this pheonomenon can be attributed. Fabrics on the portland cement
concrete surface consistently gave higher peel strengths than those on
the asphalt concrete surfaces. Microtexture, surface porosity and
aggregate surface characteristics could account for this observed difference.

At the percent time an acceptable level of peel strength cannot be

firmly established. A correlation between laboratory peel strength and
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FIGURE 16. Peel Strength of Fabrics on Portland Cement Concrete at a Peel Rate
of 5 inches/minute.
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FIGURE 18. Peel Strength of Fabgics on Asphalt Concrete at a Peel Rate of
5 inches/minute @122°F (50°C).
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field project construction performance needs to be established. As a
minimum a peel strength of 0.01 1bs. per inch (0.00178 N/mm) of fabric
width is recommended. The peel strength should be determined at the
expected "old surface" pavement temperature, at optimum tack coat and
preferable on a surface that duplicates as nearly as possible that
pavement surface upon which the fabric is to be placed. It should be
noted that the above criteria are meaningful only when tests are performed

using the same testing techniques upon which the criteria is based.

Interface Shear Strength

Individual and mean values of interface shear strength for Fabrics‘A,
D, E, F and G are presented in Appendix C. Figures 20 through 24
i1lustrate the influence of test temperature on shear strength. Figure 25
i1lustrates the effect of tack coat quantity on shear strength for the
fabrics tested. Optimum tack coat was established by use of Equation 1.
Low tack coat is one-half the optimum value while high tack coat is
twice the optimum value.

Curves associated with Control-1 samples indicate strengths for
typical old pavement-new overlay interfaces. Five hundredths of a gallon
per square yard of AC-10 asphalt éement was used as the interface tack
coat. Curves associated with Control-2 indicate mixture shear strength
(i.e. no construction interface in the plane of shear). As expected the
shear strength of the mixture is in excess of the interface shear strength.
At the calculated optimum tack coat and Tow temberatures the shear
strength of those samples without a fabric at the interface (Control-1)

is usually in excess of those samples with fabric at this interface. At
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FIGURE 21. Overlay Shear Test Results with Mixtures using Fabric D.
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the higher temperatures the shear strength of samples with. fabric at

the interface approaches the shear strength of those samples without
fabric at the interface. Fabric E when placed at the interface actually
increased the shear strength as comparéd to a no fabric interface.

Figure 25 indicates that the optimum tack coat based on maximizing
shear strength is different from that indicated from Equation 1. Fabrics
A and D illustrate increased shear strength with an increase in tack
coat quantity. The dashed lines describing Fabrics E and F in Figure 25
are extrapolated based on data at 68°F (20°C).

The tack coat quantity called "high" was twice the optimum quantity
and was without doubt more asphalt cement than should be used in an actual
overlay operation. It was anticipated that the excess tack would act as
a lubricant, especially above 100°F, and thus decrease the shear strength.
Therefore, it was surprising when shear strength increased with increased
tack coat for most of the fabrics.

The increase in shear strength with increased tack coat is probably
due to additional asphalt which migrated into the mixture adjacent to the
shear plane thus creating a more tenacious bond in the critical area.
However, this may not always occur with certain fabrics especially at
higher temperatures.

Shear strength with Fabric D is slightly higher than the other
fabrics except Fabric E which is noticeably higher than Fabric D. It
is noteworthy that Fabric D is somewhat thicker and "fuzzier" than the
other fabrics, which were actually quite slick, and that Fabric E is even
thicker and "fuzzier" than Fabric D. Therefore, it appears that shear

strength is directly related to the bulk of a fabric which in turn are
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related to the saturation level and surface fricfion of the fabric. This
seems reasonable in that the "fuzz" could act as numerous little roots to
provide reinforcement (interparticle friction) at the fabric interface
and thus provide increased shear strength.

After the shear tests using Fabric A with low tack coat, it was
observed that the fabric adhered to the Tower portion of the specimen
(where tack was applied). However, at optimum and high tack, the fabric
randomly adhered to either the upper or lower portion of the specimen.
(Figure C1, Appendix C). Apparently, the low permeability of the fabric
prevented sufficient tack from migrating to the upper side of the fabric.

From a pavement performance standpoint, it is important to have
sufficient shear strength at the interface between the old pavement and
the new overlay to prevent slippage failures. The magnitude of the
required shear strength is dependent upon the type of traffic, speed of
traffic, temperature, severity of braking and wheel turning movements,
and location of the interface within the pavement structure. At the present
time an acceptable Tevel of interface shear strength cannot be firmly
established. A correlation between interfacial shear strength, mixture
shear strength, mixture tensile strength, mixture compressive strength
and pavement performance needs to be established.

As a general guide, it is desirable to have an interfacial shear
strength of the same order of magnitude as that associated with conventionally
constructed overlays (Control-1). Since shear strengths are low at elevated
temperatures and hence critical, a reasonable desired value at 140°F (60°C)
is about 150 psi (1.03 kPa). By adjusting tack coat quantity and/or

grade, all fabrics can meet this interim criteria. It should be noted
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that the above criteria are meaningful only when tests are performed
using the same equipment and techniques upon which the criteria are based.

Conclusions. Based on the analysis of the shear tests within the
scope of this study, the following conclusions are given:

1. Fabrics have Tess affect on the interfacial shear strength of an
asphalt overlay at the higher temperatures where shear strength becomes
critical.

2. Fabrics will decrease interfacial shear strength at lower
temperatures where shear strength is more than adequate.

3. Fabrics will not compound slippage problems when properly
1nsta]jed to prevent reflection cracking in overlaid pavements.

4. Shear strength is directly related to surface texture and

friction of fabrics and somewhat dependent on tack coat quantity.

5. The optimum tack coat quantity for maximum shear strength is

generally higher than that described by Equation 1.

Flexural Fatigue

Peak stress, o, initial bending strain (bending strain @ the 200th
cycle), e, initial stiffness modulus @ the 200th cycle), E, estimated total
input energy, Uf, and estimated maximum energy density, Ud’ were calculated
for each fatigue test specimen in accordance with the formulae given in
Appendix D. Table D2 gives the results of these calculations for individual
specimens and Table 8 gives a statistical summary of those tests conducted at
peak stress level of 100 psi.

Fifteen fatigue tests were conducted on the control beahs to define
the relationships between bending stress or initial bending strain and

- number of load applications to failure. These relationships including
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TABLE 8.

Simple Statistics of Flexural Fatigue Data.

**Only those specimens tested at a stres

***yalue computed from a—Nf regression equation

s near 100 psi are included in the mean

Cycles Initial Total Max.
Samplie Specific Air Input Bending to Stiffness Energy Energy
No. Statistic Gravity, Voids, | Stress, Strain, Failure* Modulus, Input, Density,
gm/cc’ percent psi in/in psi 1b-in in-1b/in
5,400,
Mean 2.38 4.2 105 .00074 (7,100%**) 151,000 5,500 0.040
Control** | Std. Dev. 0.005 0.15 12 .00026 ---- 36,000 5,700 0.018
Coef. Var. 0.2 4 11 35 U 24 103 45
Fabric Mean 2.38 4.3 100 0.00130 3,100 80,000 4,800 0.0632
(Léw) Std. Dev. 0.007 0.25 0 0.0013 ---- 6,700 1,410 0.0054
Coef. Var. 0.3 6 0 10 33 8 30 9
Fabric Mean 2.40 3.4 102 0.00064 | 9,200 177,000 7,200 0.0327
(Ogti- Std. Nev. 0.0084 0.21 1.643 0.00020 - 69,400 3,030 0.0103
mum) Coef. Var. 0.4 6 2 32 32 39 42 31
fabric Mean 2.40 3.4 100 0.00130 4,900 78,000 7,800 0.0649
(H?gh) Std. Dev. 0.0045 0.19 0 0.00127 ---- 7,500 1,720 0.00637
Coef. Var. 0.2 6 0 10 31 10 23 10
Fabric Mean 2.36 5.3 102 0.00056 9,300 196,000 7,200 0.0288
(Ogti- Std. Dev. 0.0336 1.33 1.414 0.00017 ---- 64,000 3,780 0.0087
mum) Coef. Var. 1 25 1 30 72 33 53 30
Fabric Mean 2.39 3.8 102 0.00087 79,000 147,000 76,000 0.0475
(Onti- Std. Dev. | 0.01 0.4 2.83 0.00062 o 102,000 33,000 0.0346
mum) Coef. Var. 0.4 9 3 72 62 70 43 73
Fabric Mean 2.37 4.6 101 0.00123 4,600 88,000 6,500 0.0547
(Ogti- Std. Dev. 0.0058 0.4 1.2 0.00045 ---- 26,000 770 0.0115
mum) Coef. Var. 0.2 8 1 37 40 30 12 21
Fabric Mean 2.38 4.1 101 0.00077 7,400 133,000 7,600 0.0388
(ng) Std. Dev. 0.0045 0.19 3.89 0.00009 ---- 16,300 4,031 0.0050
Coef. Var. 0.2 5 4 12 61 12 53 13
Fabric Mean 2.39 3.91 101 0.00081 8,600 134,000 9,600 0.0411
ke
(0§t1~ Std. Dev. 0.0096 0.342 2.4 0.10016 --e- 25,000 5,800 0.0082
~ mum) Coef. Var. 0.4 9 2 20 73 19 60 20
Fabric Mean 2.3 3.60 99 0.00064 16,200 133,000 7,600 9.028
(H?gh) Std. Dev. 0.0055 0.10 1.342 0.00012 -- - 16,300 4,037 0.0119
Coef. Var. 0.2 3 1 18 25 12 53 50
*Log mean




regression equations and correlation coefficients are given in Figures 26
and 27. The correlation coefficients greater than 0.80 should be consider-
ed quite good for fatigue tests of this type.

One of the fabrics (Fabric G with optimum asphalt tack) was selected
to conduct a similar series of 15 fatigue tests. The plotted results
with regression equations and correlation coefficients are given in
Figures 28 and 29. Dashed lines on these figures represent the locus of
the regression equations for the control specimens. Observation of
Figures 28 and 29 indicates superior fatigue characteristics of the
specimens containing Fabric G. That is, at a given bending stress or
strain the control beam would fail in fewer load applications than the beam
containing Fabric G (see examples in Figures 28 and 29).

Fabrics A, D, E and F were tested at a single stress level of
approximately 100 psi. Optimum tack coats were used to fabricate the
samples for testing. Plots of strain as a function of fatigue life are
presented in Appendix D (Figures D1 through D5).

Figure 30 shows the mean number of load applications to failure
for those specimens tested at 100 psi. Generally, the test results
indicate certain fabrics with appropriate tack coats implanted within
a flexural fatigue specimen in the region of tensile stress will improve
fatigue 1ife. The total input energy required to produce failure in
these test beams shows a similar trend (Figure D7).

A comparison of Figures 30 and 31shows specimen stiffness is
affected by the fabrics and tack coats in a manner similar to fatigue
1ife, that is, increased specimen stiffness produces a corresponding

increase in number of applications to failure. This admittedly weak
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trend is illustrated in Figure 32. These results are in agreement with
earlier studies of fatigue 1ife of asphalt paving mixtures (9, 10).
Fabrics A and F are thin, slick fabrics not capable of retaining an
appreciable quantity of asphalt cement. From an asphalt tack coat cost
standpoint this is a desirable fabric characteristic; however, from a
fatigue life standpoint there are definite advantages with fabrics capable
of holding more asphalt (Figure 32 and D7). Fabric A is shown to be quite
sensitive to tack coat quantity. Insufficient asphalt at the upper
surface of this Tow porosity fabric probably did not provide an adequate
bond (side opposite tack coat application), whereas, excessive asphalt
may have over-lubricated the slick fabric thus allowing slippage at the
fabric layer and in turn excessive strain within the specimen, or that is,
decreasing specimen stiffness. Improved fatigue performance of Fabric G

samples was achieved with increased tack coat quantities.

There appeared to be some relationship between fatigue character-
jstics of a specimen and the fabric's ability to hold asphalt as well
as the fabric's surface texture. That is, those "fuzzier" fabrics with
a higher asphalt demand demonstrated superior fatigue performance during
Jaboratory testing. Evidence to support this statement is given in
Figure 33. For example, specimens made with Fabric E, a thick,
fuzzy fabric with the ability to retain a considerable quantity of
asphalt, exhibited significantly longer fatigue lives than any of the
other specimens (Figures 30 and D7). Note, however, that stiffness of

the specimens was not appreciably affected by Fabric E (Figure 31). It
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is surmised that the comparatively thick asphalt impregnated layer
offset the stiffening effects one might otherwise expect from the
fabric. However, more data would be necessary to sustain this argument.

It should be noted that increased fatigue performance, especially
at high asphalt tack rates, may be attributed in part to the excess
asphalt which migrated into the hot asphalt mixture as a result of the
kneading action during compaction. The additional asphalt cement
would decrease air voids in the critical region of the specimen and
thus enhance fatigue performance (10). In order to dispel this notjon,
it would be desirable to fatigue-test specimens with interlayers con-
taining asphalt tack coat but no fabric.

Conclusions. From the foregoing results on flexural fatigue tests,
the following conclusions appear warranted:

1. Ceftain fabrics with appropriate tack coats will improve
fatigue performance of asphalt paving mixtures.

2. Thin fabrics are more sensitive to asphalt tack application rate.

3. Thick fabrics hold more asphalt which enhances their abjlity as
a stress relieving interlayer (11) as well as a waterproofing membrane.

4. Fabrics with fuzzy surfaces and the appropriate tack coat
appear to give the best fatigue performance.

5. Fatigue performance is directly related to the amount of
tack coat.

6. Fabrics remain intact after complete rupture of the asphalt

concrete specimens.

Resistance to Thermal Reflection Cracking

Table 9 gives air void contents and number of Toad cycles to
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TABLE 9. Results from "Overlay" Test Specimens

FABRIC SAWPLE | AIR VOIDS MEAN NO. CYCLES MEAN
NO. PERCENT | AIR VOIDS | TO FAILURE | NO. CYCLES
"PERCENT T0 FAILURE
NO CT-1 3.8 48
FABRIC CT-2 3.8 3.7 42 40
(CONTROL) | CT-3 3.5 30
A A-T 5.0 69
(OPT TACK) | A-2 4.6 4.8 363 216
D-6 3.7 693
D D-7 1.5 495
(OPT TACK) | D-8 4.0 4.4 585 559
D-9 5.3 500
D-10 1.5 523
: E-4 3.8 200
E-5 1.5 4.4 130 225
(OPT TACK) | [ g 5.0 346
- F-4 4.9 116
F-5 4.9 4.9 134 120
(OPT TACK) | g 5.0 110
. G-1 4.4 200
G-2 4.4 4.5 325 277
(LOW TACK) | ¢_3 4.3 305
. G-4 1.6 300
6-5 4.5 4.5 355 335
(OPT TACK) | g 4.5 350
. G-7 5.0 1350
6-8 1.0 4.2 838 1164
(HIGH TACK)| ¢_g 3.6 1350
6-11 3.7 500
(OPT TACK) | G-12 3.8 900
G* 6-13 3.8 3.8 702 756
(OLDER G-14 3.9 1350
SPECIMENS) | G-15 3.9 238
H H-1 3.9 664
(OPT TACK) | H-2 1.3 4.1 265 465
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failure for individual reflection cracking test specimens, as well as
average values. Figures E]through’Elo show crack height as a function
of number of load cycles. (Due to scheduling changes resulting from
equipment modifications, the specimens labeled G* were aged about one
year at 35°F (2°C) prior to testing).

A11 the fabrics greatly enhance reflection cracking performance
of asphalt concrete in this mode of testing. A histogram of the mean
number of cycles to failure (Figure 34) indicates that relative
performance appears to be proportional to tack coat quantity. This
demonstrates the stress-relieving ability of the thicker asphalt layer,
however, it may be at least partly a result of migration of excess
asphalt into the voids within the adjacent asphalt concrete during
compaction which would improve tensile properties of the asphalt
concrete. Although the data are scant, evidence to support this state-
ment (Figure 35) shows increasing number of cycles to failure with
decreasing air voids. Having anticipated these effects, the specimen
air void content was controlled to range between 4 and 5 percent for
the new specimens containing fabric, which was thought to be reasonable.
In order to separate the effects of the asphalt tack and the fabrics
it would be desirable to conduct similar tests with specimens containing
an interface with various quantities of tack coat but no fabric.

Figures 36 and 37 show approximate peak loads as a function of
number of load cycles. These curves are based on average values of
peak Toad from each type of specimen tested. Those specimens containing
fabric exhibit about six times more cycles to failure than the control

specimens which contained no fabric. At the point of failure, as
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described earlier, the fabrics remained intact and even supported a
small load (typically, 5 to 10 1bs. ot 22 to 44 N). Under these test
conditions the fabrics probably would have remained intact indefinitely.
Figure 37 illustrates the benefits of increasing the quantity of tack
coat used with Fabric G. Changing tack coat quantity with Fabric G
exhibits as much variation in specimen life as changing fabrics.

A comparison of fabric properties (Table 4) with the number of
load applications to failure does not reveal any noteworthy correlations.
Additional testing at Tow stress conditions will have to be performed
on a variety of variants prior to establishment of a meaningful
correlation. Techniques useful in establishing this correlation have
been developed and appear in Appendix F.

Conclusions. This experimental technique, employing cyclic constant
displacement tensile loading, which stimulates the action responsible
for thermal reflective cracking, demonstrates several important features
of fabrics when applied to retafd reflective cracking in asphalt
concrete overlays:

1. Fabricé retard reflective cracking in asphalt cbncrete.

2. Fabrics do not support a significant Toad once the asphalt
concrete is completely ruptured.

3. Fabrics remain intact after asphalt concrete fails in
tension; asphalt soaked fabric would, therefore, retard intrusion
of moisture.

4. High tack coat rates improve the fabrics ability to retard
reflective cracks; tack coat design should, however, be approached with

caution.
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Direct Tension Tests

Ultimate tensile stress and strain with initial tangent modulus
and secant modulus are given in Table G1, Appendix G. A statistical
summary of this data is presented in Table 10.

Air void content can have considerable effects on the tensile
properties of a§pha1t1c concrete. In an attempt to produce specimens
with a narrow range in air voids, identical compaction procedures were
followed in the preparation of all specimens. The control specimens and
those containing.fabric with the optimum tack coat were fabricated
and tested about six months earlier than the remainder of the specimens.
The second group of test specimens fabricated and tested contained
significantly lower air voids than the first group (Table G2). Values
of stress and strain at failure have been plotted as a function of air
void content and a linear regression equation was determined for each
(Figures G1 and G2). This linear relationship was used to "normalize"
the stress and strain data or, that is, determine the value of stress
or strain that would have been obtained if all specimens contained a
similar quantity of air voids. Histograms showing the normalized
values of stress and strain in Figures 38 and 39.

Figure 38 indicates that tensile strength of asphalt concrete can
be improved by the installation of fabric and appropriate quantities
of asphalt tack. As expected, the tensile strength is dependent upon
the quantity of tack coat as well as the type of fabrics. Optimum
tack coat quantities for maximizing tensile strength may not be
identical to that required for peel strength, fatigue, crack

resistance, etc.
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Figure 39 indicates that tensile strain at failure can be
improved by placing fabrics in asphait mixtures. The tensile strain
at failure is dependent upon the tack coat quantity as well as the
type of fabric.

Figure 40 shows that the initial tangent modulus in tension can
be improved by the use of fabrics which illustrates the reinforcing
effects of the fabrics at very low strains. The type of fabric as
well as the amount of tack influences the initial tangent modulus.

Correlations between fabric properties and mixture tensile
strength are not readily evident from a review of the data. The thin,
smooth surfaced fabrics (A and F) produced high tensile strains at
failure. Specimens containing fabrics with high tack coat requirements
(D and E) show no outstanding behavior.

Conclusions. Direct tensile test results of fabric-asphalt concrete -
systems under the conditions described above support the following
conclusions.

1. Tensile strength at failure, tensile strain at failure and
initial tangent modulus can be improved by the use of fabrics.

2. Fabrics femain intact after the asphalt concrete fails in
tension.

3. Optimum tack coat quantities for maximizing tensile strength
may not be identical to that required for peel strength, fatigue, crack

resistance, etc.
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SYSTEMS TO REDUCE REFLECTION CRACKING

(FIELD EXPERIENCE)

Based on available literature (See Bibliography, Table 11) it is

evident that a number of overlay systems including those given below

have been utilized in an attempt to eliminate or reduce reflection

cracking:
1.
2.

9.
10.
11.

stone dust bond breakers

unstabilized aggregate layers

thick overlays of dense graded asphalt concrete

thick overlay of large maximum size open graded asphalt
stabilized mixtures

reinforcing steel or wire mesh

low rubber content asphalt concrete seal coats and asphalt
concrete mixtures

asphalt-rubber chip seals (high rubber content asphalt cements)
fiber reinforced asphalt concrete mixtures

heater-scarification

surface spray applications of asphalt cement softening materials

fabrics

Results of field trials conducted by state departments of transportation

to investigate methods for reducing reflection cracking to bituminous

overlays are to a large extent inconclusive. However, results do

indicate that the most promising overlay systems appear to be the following:

1.

thick overlays of asphalt concrete (dense or open graded)
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TABLE 11.

Summary of State Field Trials.

Description
State of Comments 01d
Treatment Pavement
Arizona Dept. 1 1/4 AC + Sahuaro asphalt rubber chip After four years of FLEXIBLE
of Transportation sea service the following
(8) 3/4" heater-scarification + Petroset + five treatments were
1 1/4 AC + 1/2" OGFC found to have sig- 35" AT '_
1 1/4 AC + Sahuaro asphalt rubber chip nificantly reduce 3.0" Asphalt Treated

seal + 1/2" OGFC
1 1/4 asbestos AC + 1/2" 0GFC
1 374" AC
1174 AC + 1/2" 0GFC
1 1/4" OGFC {emulsions) + 1/2" OGFC
Petromat + 1/4" AC + 1/2 OGFC
Fiberglass + 1/4 AC + 1/2 OGFC
1/4 AC + Petroset + 1/2 OGFC
fill cracks with Petroset + 1/4 AC + 1/2

C

fi11 cracks with Reclamite + 1/4 AC +
1/2 QGFC

Reclamite + 1/4 AC + 1/2 OGFC

3/4 heater-scarification +
Reclamite + 1/4, 1/2 or 3 AC'+
1/2 OGFC

Control Section 1/4, 1/2 or 3 AC + 1/2
0GFC

reflective cracking;

1) heater-scarification

with Petroset, 2) asphalt
rubber membrane seal coat
under 0GFC, 3) Fiberglass
membrane, 4) heater-
scarification with reclamite,
5} overlays made with 200-300
penetration asphalt.

Base
6 to T5" subbase

AR T
6" Base
15-21" Subbase

California Dept.
of Transportation
9)

Thick Sections of AC
0GFC + AC

Rubberized Slurry seal
Slurry Seal
Petrolastic

Stone Dust

Petromat

Cerex

Asphalt rubber chip seal
Heater-scarification
Petroset

Reclamite

After two to four years of ser-

FLEXIBLE &

vice on nine projects it appears RIGID

as if an additional 2.4 in.

AC overlay performs better
than most other overlay
systems. Petromat has

proven to be effect on
pavements exhibitiong
alligator cracking. “Emulsion
sturry seal, rubberized slurry
seal and Petroset were not
effective on one project.

Colorado Division
of Highways
(7)

Reclamite + 2 1/2 in. AC

Petromat + 2 1/2 in. AC

Slurry Seal + 2 1/2 in. AC

Squeegee Seal of Asphalt and Limestone
Dust + 2 1/2 in. AC

5/8" Heater Scarification + Rejuvenating
Agent + 2 in. AC

5/8 in. OGFC + 2 in, AC

Crack Sealing + 2 1/2 in. AC

2 in. AC containing 15% rubberized asphalt

2 1/2 in AC + Petroset

Control - 2 1/2 in. AC

After five years of service
the sections had the following
percentage of reflection
cracking; Reclamite (96},
petromat (0), slurry seal
(29), squeegee seal (87),
heater-scarification (100},
Plant mix seal (48), crack
sealing (80), AC with
rubberized asphalt {35},
petroset {21), control (80).
The most promising treatment
appears to be the use of a
fabric.

FLEXIBLE

3TAC
4" Base
6-1/" Subbase

-Florida Dept. of
Transportation
(6)

1 in. AC + Structofors + 2 in. AC

3 in. AC + Reclamite

1 in. AC + Petromat + 2 in. AC

1 in. AC + 1 in. AC + Petroset + 1 in.
AC + Petroset

chip seal + 3 in. AC

1 in, AC + 1" OGFC + 1" AC

4 in. AC

control - 3 in, AC

After seven years of service
the Petromat section had

70 percent reflection cracking,
extra thickness 85 percent re-
flective cracking, open graded
100% reflective-cracking. All
other sections had more cracks
than in old pavement. For ex-
ample; the control section had
33% more cracking, structofors
76% more cracking and the
minimal seal 66% more cracking.

FLEXIBLE

3"AC

10" Base
2™ [imé Stabilized
Subgrade

Georgia Dept. of
Transportation
(10}

3/4 in. AC + Mirafi + 2, 4, 6 in. AC
0GFC

3/4 in. AC + Petromat + 2, 4, 6 in. AC
+ 0GFC

Waterproofing membrane + 2, 4, 6 in
AC + OGFC

3.5 in. Coarse Open Graded Base +
3.5" AC

Control - 2, 4, 6 in. AC + OGFC
3, 4, 5, 6.0 in. PCC

After one year of service the
data indicate that fabrics re-
tard reflective cracking. The

RIGID

coarse open graded base section g™ pCC

is also performing well.

3" Asphalt Stabilized
5 SuEBase

Iowa Dept. of
Transportation

Structofors + 3 in. AC
Petromat + 3 in. AC
control - 3 in, AC
Cerex + 3 in. AC

After five years of service
refiection cracking at the
widening joint was 35% for
the control section (3 inch
overlay), 6 percent for Cerex,
1% for structofors and 0% for
Petromat.

After five years of service
reflection cracking at
transverse cracks was 51
percent for the central
section, 25% for Cerex and
structofors and 16 percent
for Petromat.

RIGID +
FLEXIBLE WIDENING

New York State
Dept. of Trans-
portation

(12, 13)

Broken Pavement + Overlay
Stone-Dust Bond-Breaker + overlay
Wire Mesh Reinforcement with overlay

Over 90 pavement sections
were studied indicating the
stone-dust is not an effective
method while wire mesh and
broken pavement section
studies have been inconclusive

RIGID

North Carolina
Dept. of Trans-
portation

any

Mirafi + 2" AC
Petromat + 2" AC
Structofors + 2" AC
Fiberglass + 2" AC
0GFC + 2" AC

Sand Seal + 2" AC

After one year of service
insufficient data have been
accumulated to permt defi-
nite conclusions. However,
the Mirafi fabric has per-
formed better than the

RIGID

T-9" FCC
Subgrade

Control - 2" AC

control section.
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Description
State of Comments 01d
Treatment Pavement
North Dakota State Asphalt treated sand with 3 1/2
Highway Department fly ash + 3 1/2 in. AC
(28) Asphalt treated sand + 2 1/2 in,
AC
Structofors + 2 1/2 in. AC
Petromat + 3 1/2 in. AC
1/2 in. OGFC + 3 1/2 in. AC
Emulsion slurry seal + 3 1/2 in. AC
Rubberized slurry seal + 3 1/2 in. AC
Oklahoma Dept. of Petromat (fabric) + 1 in. AC + 3/4 OGFC After three months of service FLEXIBLE
Highways Mirafi (fabric + 1 in, AC + 3/4 OFGC on IH 40 minor cracking has
(4, 40) Control = 1 in. AC + 3/4 OGFC occurred in Petromat section
. and no cracking in the Mirafi TR T
' section. Cracking was evident —8" Base

in the control section. Three
other test sections have been
placed. Fabric sections have
performed equal to or better
than control sections.

6-T0" Subbase

South Dakota Petromat (fabric) + 0.5 to 2.0 in. After three years of service FLEXIBLE
Dept. of Highway of Asphalt mixture cracks have reflected in both
{1) Protecto-Wrap (fabric + coal tar) + sections but an adequate seal
0.5 to 2.0 in. Asphalt mixture has been obtained.
control - 2 in. of asphalt mixture
Texas State Department SC + AC After several years of expe- FLEXIBLE
of Highways and Public AC + Petromat + SC + AC rience on several sections RIGID
Transportation (16, 17, SC + OGFC good performance has been
18, 19, 20, 21, 22, 23) petromat + SC + OGFC obtained with fabrics and
AC + Petromat + AC wire mesh.
Petromat + AC
Fiberglass + Wire Mesh
Vermont Department Recycle - Pulverize in-place + emulsion + After two years of service FLEXIBLE
of Highways 2 in. AC recycled sections show no
?2, 3) Recycle - Pulverize in-place + 2 in. AC cracking, rubberized crack
Rubberized Crack Filler + 2 in. AC filler + overlay reflected
Rubberized Crack Filler + 3/8" transverse cracking and
Slurry + 2 in. AC rubber slurry seal, ex-
Rubberized Crack Filler tensive cracking.
Control -~ 2 in. AC
Los Angeles County Wire Mesh with overlay After 4 years of service RIGID
Road Department Sheet Metal + overlay the stone dust treatment
Saturated Building Paper + overlay was acceptable.
Aluminum Foil
Waxpaper
Stone Dust
Granular Interlayers 1, 3, 6 in. + overlay After 4 years of service the RIGID

Ontario Ministry of
Transport and Com-
munications

(15)

O0GFC + overlay

Remove & Replace Surface

Pulverize Existing Surface + overlay
saw Transverse Joints in overlay

stone dust treatment was
acceptable.

AC - As_pha]t Concrete
SC - Chip Seal Coat

O0GFC - Open Graded Friction Coarse




2. asphalt-rubber chip seals with an overlay

3. heater-scarification in combination with softening agents

and an asphalt concrete overlay

4, fabrics in combination with overlays

Performance of fabrics has been addressed on a national scale
by the Federal Highway Administration in their National Experimental
and Evaluation Program Project No. 10 (NEEP No. 10) (37). This
program was initiated in 1970 and contained a number of state projects
which evaluated the use of a Phillips Petroleum Company fabric. The
conclusion of the Federal Highway Administration can be briefly
summarized as follows:

1. There is no strong evidence that "Petromat" provides a
universal mechanism for extending the crack-free life of an overlay.
Reports from the states of Colorado, California, Florida and Texas
support the use of fabrics while reports from Arizona, Louisiana,
Wyoming and North Dakota are not in general support of fabrics.r These
data, in general, support the concepts that fabrics perform well in
mild climates.

2. Insufficient quantitative data have been obtained in the
majority of the test sections. This lack of data makes it nearly
impossible to classify those pavements and environmental conditions
under which fabrics have performed satisfactorily. Some reports,
however, have indicated that fabrics are most suited for prevention
of reflection cracks when placed over pavements that exhibit alligator

cracking. Fabrics in general do not demonstrate good performance

over thermally cracked asphalt concrete pavements and portland cement
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concrete pavements.

The conclusion as to the performance of fabric overlay systems
reached by the Federal Highway Administration is in general agreement
with the literature presented in Table 11. Other general conclusions
that can be inferred from this literature review and based on the

authors experience are as follows:

Conclusion

1. For flexible pavements with alligator cracking a fabric with

a one inch asphalt concrete overlay will perform about equivalent to‘
a 2-inch asphalt concrete overlay. This statement does not imply that
a fabric with a 2-inch overlay will perform about the same as a 4-inch
overlay without fabric. Performance of fabrics placed with thicker
overlay sections of asphalt concrete have not been well established.

2. For flexible pavements with transverse (therma1 type) cracks,
improved early performance may be obtained with fabric overlay systems.
This advantageous performance may not extend past 3 years or through
severe winters.

3. Fabrics have been used for routine surface patching operations.
Chip seals placed over fabrics and utilized to repair isolated
alligator type cracking has been successful in Texas.

Several new experimental projects placed in the last 2 to 3 years
will supply data on the performance of several types of fabrics
including those shown in Table 12. Experimental sections placed in
Georgia over concrete pavement should provide valuable performance

data. Test sections planned in Texas for the summer of 1979 will be
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TABLE 12. Fabric Manufacturers.

Material Manufacturer
Structofors American Enka Corporation
Enka, North Carolina
Petromat Phillips Fibers Corporation
Petromat Marketing Office
Post Office Box 66
Greenville, South Carolina 29602
Cerex Monsanto Company
Bidim 800 North Lindberg Road
St. Louis, Missouri 63166
Mirafi Mirafi Inc

Post Office Box 240967
Charlotte, North Carolina 28224

Fiberglass

Burlington Glass Fabric Company

Typar

DuPont Company
Explosive Products Division
WiTmington, Delaware 19800

Bithuthene Strips
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designed in such a manner that the structural or Toad carrying ability
of the pavement will be considered as an input to performance.

Additional field performance information should be collected in a

systematic and continous fashion.
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ECONOMIC CONSIDERATIONS

The engineer has a number of rehabilitation alternatives which
are suitable for eliminating or reducing the occurrence of reflection
cracking. Overlays and reconstruction including the concepts of
materials recycling are commonly used. The most successful overlay
systems for reducing the occurrence of reflection cracking are
thick overlays and asphalt-rubber chip seals, heater-scarification
and fabrics in combination with asphalt concrete overlay. Cost
comparisons of these alternatives on both a first cost and 1ife cycle
basis are of interest to the engineer and should be considered when
selecting the optimum rehabilitation alternative for a particular
segment of pavement.

First costs for a number of rehabilitation alternatives are shown
in Table 13. These costs data are intended to be representative only.
Relative costs can be expected to vary depending on the location in the
country, cost of materials, cost of labor, cost and availability of
equipment and productivity. For a particular project the engineer is
encouraged to obtain and utilize local cost information.

As noted on Table 13 the first costs of the fabric interlayers,
asphalt-rubber interlayers and heater-scarification operations are
nearly identical. In addition, the first cost of one inch of asphalt
concrete is about equivalent to the various interlayer approaches to
reducing reflection cracking. Thus, from a first cost standpoint none
of the recommended systems have a decided advantage. Performance of

the various systems therefore must be considered.
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TABLE 13. Typical Costs for Rehabilitation Alternatives Suitable for
Reducing or Eliminating Reflection Cracking.

Typical Cost Range Representative Cost
Material or Operation $ per sq. yd. $ per sq. yd.
* *
Asphalt Concrete 0.80 - 1.40 1.25
* *
Recycled Asphalt Concrete 0.70 - 1.40 1.00
Chip Seal Coat 0.25 - 0.75 0.55
Fabric Interlayer 0.80 - 1.50 1.25
Heater-Scarification and
Softening Agent 0.40 - 1.30 0.90
0.80 - 1.50 1.25

Asphalt-Rubber Interlayer

*Cost per square yard for 1-inch thickness
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Life cycle analysis techniques are used to compare rehabilitation
strategies which have different performance periods. Costs over the
life of a facility for various rehabilitation alternatives are
reduced to an equal annual cost or to a present worth. The rate of
return of capital is commonly considered in these standard engineering
economic analysis techniques.

As an example of the aforementioned technique, ten different
rehabilitation strategies have been proposed for a 9-mile (2 lane)
pavement in West Texas (Tables 14 and 15). This pavement has 7 to 9
transverse cracks per 100 feet of roadway and in excess of 200 feet
of longitudinal cracks per lane, 100 feet in length. The pavement is
structurally sound but is becoming rough riding and requires a large
expenditure for routine maintenance. First costs for the 10 techniques
considered are shown on Table 16 together with their expected
maintenance and rehabi]itation costs for a 20-year period. Present worth of
the various alternatives is shown on both a square yard basis and for
the entire 9-mile pavement section based on a 0 and 8 percent rate of
return (Table 16). Performance of the various rehabilitation alternatives is
based on the‘availab1e literature and the authors' experience. Maintenance
costs were estimated based on information contained on Table 17.

Utilizing this type of analysis framework, it is possible to perform
"what if games". For example: '

1. "What if" the life of the fabric reinforcement plus two-
inch overlay (alternate 3) were 15 years rather than 10 years.

2. "What if" the first cost of the fabric reinforcement plus

two-inch overlay were $3.00 rather than $3.75.
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TABLE 14.

Plan 1:
Plan 2:
Plan 3:
Plan 4:
Plan 5:
Plan 6:
Plan 7:
Plan 8:
Plan 9:
Plan 10:

Rehabilitation Alternatives Defined.

Two-inch asphalt concrete overlay with maintenance on a
7 year cycle (asphalt concrete $25.00 per ton).

Chip seal plus 2-inch asphalt concrete overlay with
maintenance (chip seal $0.55 per square yard, asphalt
concrete -$25.00 per ton).

Fabric reinforcement plus 2-inch asphalt concrete overlay
with maintenance (fabric reinforcement $1.25 per square
yard, asphalt concrete $25.00 per ton).

Recycle existing 4 inches of material and blend a selected
aggregate into recycled mixture. A 2-inch overlay is
scheduled after 5 years (recycling at $20.00 per ton and
overlay at $25.00 per ton).

Recycling existing 4 inches of asphalt materials and 2
inches of asphalt concrete overlay with maintenance
(recycling $16.00 per ton, asphalt concrete $25.00 per ton).

Recycling existing 4 inches of asphalt materials and 2
inches of asphalt concrete overlay with maintenance which
includes a two-inch overlay (recycling $16.00 per ton,
asphalt concrete $25.00 per ton).

Recycling existing 4 inches of asphalt materials and 2
inches of asphalt concrete overlay with maintenance
(recycling $20,00 per ton, asphalt concrete $25.00

per ton).

Delay recycling 4 years and then recycle and add 2 inches
of asphalt concrete overlay with maintenance (recycling
$16.00 per ton, asphalt concrete $25.00 per ton).

Heater-scarify to a depth of 1 to 1.5 inch and 2 inches
of asphalt concrete overlay with maintenance (heater-
scarification $0.90 per square yard, asphalt concrete
$25.00 per ton).

Asphalt-rubber interlayer and 2 inches of asphalt concrete

overlay with maintenance (asphalt-rubber interlayer $1.25
per square yard, asphalt concrete $25.00 per ton).
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TABLE 17. Representative Costs for Maintenance and Rehabilitation Activities.

Cost Dollars * Per Percent of Total
Maintenance Activity Sq Yd Lane Miles Pavement Area Treated
Fog Seal - 0.045 320 50 percent
Partial Width
Fog Seal - , 0.06 420 100 percent
Full Width . .
Chip Seal - 0.06 420 15 percent
Partial Width
Chip Seal - 0.21 1,500 100 percent
Full Width
Surface Patch - 0.10 700 2.5 percent
Hand Method T inch thick
Surface Patch - 0.08 560 10 percent
Machine Method 1 dinch thick
Digout & Repair - 0.25 1,760 2 percent
Hand Method 4 1inches thick
Digout & Repair - 0.20 1,400 5 percent
Machine Method 6 inches thick
Crack Pouring 0.12 850 250 Tin. ft.
Per Station

Asphalt Concrete 1.90 13,400 100 percent
Overlay 2 inches thick

*Costs are for square yards of total pavement surface maintained. For example,
surface patching by the hand method may have been applied over only 5 percent
of total pavement surface area, yet costs reported are for the total pavement
area maintained or one mile of pavement.

Metric Conversions:

1 yd® = 0.83 n°
Tmi = 1609 m

1 in. = 0.024 m

1 ft = 0.305m
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These types of "what if" analyses can be performed to determine a
competitive cost for new products, provided the competition and its
cost is identified and the 1ife of the competition and new product

can be obtained or predicted. The major competition for fabrics has
been identified and their first cost range established. The relative
performance of the competiting products needs to be firmly established
for various pavement conditions.

Figure 41 which assumes a 0% rate of return and no maintehance
cost can be utilized to simply combine the effects of first cost on
performance life. For example, if the first cost of a suitable overlay
system is $1.00 per square yard and it normally performs for a period
of 5 years, a competitive system that cost $1.20 must last 6 years, a
competitive system that cost $1.60 must last 8 years and a system that
cost $2.00 must last 10 years. This simplified approach is appropriate
for a general comparison only. The approach method described above

and shown on Table 16 is suggested for detailed analysis purposes.
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GENERAL CONCLUSIONS

Based on the previously discussed laboratory test results, analysis
of existing field data, economic considerations and fracture mechanics
theory, the following conclusions appear warranted:

1. To date, field performance is not well defined, however, fabrics
show promise in retarding reflection cracking from pavement exhibiting
fatigue distress.

2. At the current state-of-the-art, economic benefits to be gained
from the use of fabrics in overlay applications is marginal.

3. Shrinkage of some fabrics associated with the high temperatures
of newly placed asphalt concrete can cause premature cracking of the
overlay. This cracking can be controlled by utilizing proper construc-
tion techniques and by modifying the fabrics shrinkage characteristics.

4. The potential for pavement slippage at the fabric-pavement
interface is no greater for fabric overlay systems than for
conventional overlays.

5. Fabrics will improve pavement fatigue performance.

6. Fabrics will improve resistance to reflective cracking in
asphalt concrete overlays.

7. Tensile properties of asphalt concrete is improved by the use

of fabrics.
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Appendix A

Cooling Time for Asphalt Mats
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Appendix B

Peel Strength TestAData
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TABLE B-2. Coefficients of Variation of Peel Strength Measurements.
A%QZ”%qé Coefficient of Variation, percent
Zb‘ezﬂﬁég Port]and Cement ancrete Asphalt Concrete
& 5 in/min 20 in/min 5 in/min 20 in/min
% %
Fabric Low [Opt | High | Low | Opt | High | Low [ Opt |High | Low | Opt | High
A | | 9 11 4 16| 8 6 30 71 78 371 2 10
B 33 511 27 31| 2 3 36| 30} 15 121 8 4
C 0 01 13 16{ 6 7 5T 29 0 25| 2 0
D 11 51 11 101 5 |15 131 10 8 271 1 7 .
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Appendix C

Shear Strength Test Data
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TABLE C-1. Results of Shear Strength Tests .
Spgcjmen“ Test Shear Strenath, psi
Tdentificaticn Temp. °F Low Tack Opt. Tack HighTack
(°c) Avg. Avg. Avqg.
68
(20) 287 247
173 | 230 300 249 -—-
253
153
103 153 207 247
A (40) 157 | 160 220 199 240 | 240
177 153 243
173 233
140 123
(60) - | == 130 120 ——= | ---
106
115
68 147 293
(20) 260 | 200 300 280 el
280
253
160 173 253
103 230 220 297
D (490) 167 {190 167 190 293 | 290
200 240 320
213
149
140 119
(60) == | m-- 121 120 -—= | ===
- 293 379 425
A8 332 310 402 390 329 | 400
(20) 425 439
390
E 362
4n7
103 231 70
(40) 244 1240 265 270 -—-
258
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TABLE C-1. Continued

Specimen Test ' Shear Strenath, psi
Identification Temp. °F Low Tack Ont. Tack High Tack
(°C) Avq. Avg. Avg.
68 , 216 355 , 363 -
(20) 1991 185 365 340 420 390
’ 149 317 374
F 332
103 161 202 170
(40) 1821170 126 S i
168
68 172 199
- (20) 121 1 150 297 260 - -—-
q 179 288
103 143 172 185
(40) 147 [ 130 178 180 166 170
111 190 . 166
194
(gg) NA | NA 328 350 NA NA
Control -1 -
No Fabric - 103 }6g
0.05 Tack NA| NA 0 ( NA NA
(40) 196 | 180
200
140 : 121
(60) NA | NA 144 130 NA NA
118
68 427
Control - 2 2 44n NA NA
Asphalt Conc. (20) NA NA 453
No Interface 103 273
(40) NA | NA 293 290 NA NA
310
140 155
(60) NA NA 148 1590 NA NA
_ 158
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TABLE C2. Physical Properties of Shear Test Specimens.

NO INTERFACE

FABRIC TACK COAT SPECIFIC | AIR VOIDS
CODE gal/yd® GRAVITY | percent
LOW=0.07 2.33 6.3
A 0PT-0.14 2.33 6.5
HIGH-0.28 2.34 6.1
LOW-0.11 2.3 5.8
D OPT-0.23 2.32 6.9
HIGH-0.46 2.36 5.1
LOW-0.20 2.34 7.4
E OPT-0.40 2.35 6.9
HIGH-0.75 2.38 5.9
LOW=0.07 2.34 7.6
F 0PT-0.13 2.34 7.5
HIGH=0. 26 2.34 7.5
LOW=0.10 2.27 8.5 -
g OPT-0.20 2.29 3.1
HIGH-0.40 2.27 8.8
CONTROL-1 0.05 2.27 8.5
NO FABRIC
CONTROL-2 0 2.37 8.0
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FIGURE C1. Airport Shear Test Specimens after Testing with
Fabric A (Tack Coat Rate Increases from Left to
Right-Low, Optimum, and High).
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Appendix D

Flexural Fatigue Test Data
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TABLE DT. Test Results from Fatigue Specimens Fabricated by Two Techniques.
Fabrication Sample Input | Bending Cycles to | Stiffness | Specific| Air
Technique No. or Stress | Strain, Failure Modulus Gravity | Void,
Item “psi in/inx10'4 ps1‘x103 percent|
L-2 78 5.12 26,617 150 2.39 3.9
Weathered L-2 83 6.86 16,504 120 2.38 4.1
Surface + L-4 83 4.85 85,408 169 2.39 3.9
Tack Coat + L-5 80 4.75 40,001 170 2.39 3.9
Dry Fabric Mean 81 5.40 42,000 152 2.39 4.0
Std. Dev. | 2.4 n.99 30,000 23 0.005 0.1
Coef. Var.| 3% 18% 72% 15% 0.2% 3%
x-1 72 4.64 29,129 155 2.38 4.3
x-2 71 5.21 25,430 136 2.38 4.3
Presoaked x-4 71 5.87 45,598 120 2.37 4.7
Fabric X-5 79 6.23 53,573 126 2.38 4.1
Mean 73 5.49 38,433 134 2.38 4.4
Std. Dev. | 3.9 0.71 13,000 15 0.005 0.3
Coef. Var.| 5% 13% 35% 1% N.2% 6%
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Summary of Formulae
for

Third-Point Loaded Beam (7)

P/2 P/2
PR J—
r
h
{
1
L/3 L/3 L/3
P/2 : P/2 Equation No.
. . a _ PL .
Peak stress in extreme fiber = Opax = —7 » Psi (D1)
bh
3,
Initial stiffness modulus = E QLZlﬁgﬂL_ + 8'4g2 PL(1+u) R
wo bh 0
psi (D2)
Initial bending strain in extreme fiber = ¢ = %-, in./in.
(Hooke's Law) (D3)
_ 10.2 P WO Nf
Total input energy = Ue = 53 , in.-1b ‘ (D4)
. . © max)% in.-1b
Maximum energy density = Ug = 5F » ——— , (D5)

where

in.

applied Toad, 1bs

tested length of beam, in.

width of beam, in.

h = depth of beam, in.

Wy = center deflection of beam at 200th cycle, in.
u = Poisson's ratio (assumed 0.35)

i

-~ O
i

Nf = number of cycles to failure
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An Explanation of Energy Terms

The total input energy, Uf, is the macroscopic amqunt of energy
(or work) imparted to the specimen during the testv(up to failure)
by external forces. By contrast, the maximum énergy density, Ud’
is the microscopic strain energy per unit volume which occurs at a
point in the most highly stressed region of the specimen at the
peak of any given cycle (7). Total input energy is used herein as

a comparative measure of fatigue performance.
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Appendix E

Thermal Reflection Cracking Test Data
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Appendix F

Application of Fracture Mechanics

to Pavement Reflection Cracking
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APPLICATION OF FRACTURE MECHANICS
TO PAVEMENT THERMAL REFLECTION CRACKING

Introduction

Fracture mechanics principles together with the use of finite
element analyses computer programs can be used to analyze the pavement
reflection cracking problem. Details of this approach can be found

in reference (38). The application of this approach is illustrated in

this appendix.

Finite Element Analysis

Finite element calculations have been used to calculate values
of the fracture mechanics factor, 2K/Eu, as a function of the relative

crack length, c/d. The following are the definitions of each of these

symbols:
K = the stress intensity factor, 1b - in'3/2
E = the elastic modulus of the material, 1b/1‘n2
u = the crack opening, inches
c = the crack length, inches
d = the height of the overlay specimen, inches

If the last four variables are known, then the stress intensity
factor can be calculated using these results of the finite element
calculations. The elastic modulus that is uséd to calculate the stress
intensity factor in asphalt concrete should be measured at the same
strain rate as used in the reflection cracking test on the same material.
If this is not done, then the stress intensity factors calculated with
these elastic moduli cannot be expected to obey the theory exactly.

However, any elastic modulus which is measured in a consistent way may
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be used to determine empirical relations that may closely resemble the
theoretical expressions derived in the theory. Because the elastic
moduli used in these calculations were taken from the direct tension
tests which were performed at a different strain rate and a different
percent of reinforcing fabric in the cross-sectional area than those
used in the overlay tester, the empirical approach is adopted here. Two
moduli were used: (1) the initial tangent modulus, Ei’ from the initial
slope of the stress-strain plot and (2) the final secant modulus, Ees
that was obtained by dividing the failure tensile stress by the failure
strain. These values were obtained from the direct tension test data.
The average values of these two moduli for each of the test specimens
are shown in Table F-1. Also shown in that table is the ultimate tensile
stress carried by these direct tension test specimens.

The relationships between the relative crack length, c/d, and the
stress intensity factor ratio, 2K/Eu, that are used in Table F-2 were
determined by finite element analyses of overlays of varying thicknesses
elastic moduli, crack openings, and crack lengths. The results of these
analyses are reported in detail in reference 39. Two sets of stress
intensity factors were calculated, Ki and Kf, corresponding to the two
values of elastic modulus. Typcial calculations for Fabric G at
optimum tack rate are shown in Table F-2. Obviously the stress intensity

factor decreases as the crack length increases.

Fracture Mechanics

According to fracture mechanics theory, the size of the stress

intensity factor at a given crack length. The correlation between

the two is called Paris' Law:
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TABLE F-1. Initial and Final Elastic Moduli from the Direct Tension Tests.

Initial Final Ultimate
. Elastic Elastic Tensile
Fabric Tack Modulus, Modulus, Stress
Code Rate E., psi Ef, psi o _s psi
i : m
Control None 141,000 24,000 77
A Opt. 300,000 19,700 97
D Opt. 24,000 20,100 64
E Opt. -——- 12,200 51
F Opt. 64,000 19,400 67
G Opt. 360,000 24,700 112
G Low 268,000 17,000 87
G High 537,000 27,700 157
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TABLE F-~2. Calculations of Stress Intensity Factors, K;

for Fabric G at Optimum Tack Rate.

and Kf,

Finite
E]emen?
fesits | g |t
Relatlive 2K éggigilnyi égﬁigi;nyf rohes”
Length, & Eu
0.06 1.31 12,220 1,130 0.18
0.12 0.69 6,440 600 0.36
0.20 0.55 5,130 400 0.60
0.29 0.46 4,290 400 0.87
0.37 0.42 3,920 360 1.11
0.45 0.38 3,540 330 1.35
0.54 0.36 3,360 310 1.62
0.63 0.34 3,170 290 1.89
0.70 0.33 3,080. 285 2.10
0.78 0.32 2,980 280 2.34
0.87 0.31 2,890 270 2.61
0.96 0.27 2,520 230 2.88
1.00 0.00 0 0 3.00
Example:
N 1 or 1.31 (5
Eiu ] )
—— = 9326 1b/in., -+ 865 1b/in.
Ky = 1.31 (9326) = 12,217, K. = 1.31 (865) = 1130
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e o AK(c)I" (1)

dN
where K = the stress intensity factor at some crack
length, ¢
%ﬁ = the rate of change of crack length per cycle
at that same crack length, c
A, n = material propérties to be found graphically
N = the number of cycles.

In order to find the two material properties A and n, it is
necessary to know the rate of change of crack length per cycle. The
overlay test data were plotted on logarithmic paper and equations were
found for the measured crack length, c, in terms of the number of
cycles, N. Two such plots are shown in Figures F-1 and F-2. Figure F-]
represents the data on crack growth through an overlay with no fabric
and Figure F-2 is for Fabric G with optimum tack rate. The equations
relating the two variables were of the form:

c=aN b (2)

Values of a and b for each material are given in Table F-3. The
constants may be interpreted as follows. The constant, a, is the
distance, in inches, that the crack travels into the overlay the first
time it opens. The constant, b, is a measure of crack retardation.
The smaller value of b indicates a slower rate of growth of the crack.

Taking the derivative of ¢ with respect to N gives the rate of
crack growth per cycle as a function of number of repetions. The

equation becomes:

L= (ap) ! (3)

The number of cycles that is required to reach a given crack

length can also be found from Equation 2.
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TABLE F-3. Crack Growth Constants for Different Fabric.

Fabric Tack a b

Code Rate (inches)

Contro] N.A. 0.33 0.600
A Opt. 0.68 0.293
D Opt. 0.75 0.220
E Opt. 0.86 0.233
F Opt. 0.73 0.295
G Opt. 0.59 0.273
G Low 0.46 0.333
G High 0.74 0.183
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1
N= (S /P (4)
Equation 3 and 4 are used together to determine the rate of crack
growth per cycled for a given crack Tength:

b-1

L=l B (5)

A typical set of such calculations is shown in Table F-4 for
Fabric G with the optimum tack rate.

The experimental values of gﬁ-are plotted vertically and the cal-
culated values of Ki and Kf are plotted horizontally on logarithmic
graph paper. The plot of gﬁ- versus Ki is shown in Figure F-3 and the
plot using Kf is shown in Figure F-4.

Several observations may be made about these two graphs.

1. The slope of the control curve is flatter. This means that
the growth rate in asphalt concrete without any fabric is
less sensitive to changes in stress intensity factor than
the same material with fabric.

2. The farther a curve is shifted to the right, the slower a
crack will be growing for a given level of stress intensity
factor. In both graphs, the curve that is farthest to the
right is for Fabric G with high tack rate.

Each of these curves has an equation in the form of Paris' Law (E9. 1),

which is repeated here for ready reference.

& =a " (1)

Table F-5 shows the values of A; and n, (based upon Ki) and A;
and Ne (based on Kf). These are the fracture properties of the asphalt

concrete with and without fabric. It is obvious at a glance that
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TABLE F-4. Crack Growth Rate Per Cycle
' for Fabric G with Optimum
Tack Rate.
Crack
Growth
Rate
Crack Cycles, Per
Length, Cycle
inches N “{in/cycle)
0.18 .013 3.82
0.36 .162 0.60
0.60 1.05 0.16
0.87 4.10 0.058
1.11 10.0 0.030
1.35 20.5 0.018
1.62 39.9 0.011
1.89 70.1 0.007
2.10 103 0.006
2.34 153 0.004
2.61 229 0.003
2.88 328 0.002
3.00 380 0.002
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fabrics greatly alter the fracture properties of asphalt concrete. A
further question that remains to be answered is: What fabric property
or direct tension test property is most important in changing these
fracture properties?

Before attempting to answer that question several observations
can be made on relations between these fracture properties. Firstly,
for optimum tack rates, 1og,A1 may be plotted against n; as shown 1in
Figure F-5. They form a straight Tine with equation:

n; = 0.284 log A; - 0.5 (6)

The same may be done for log Af and g as shown in Figure F-5 to

give an equation:

= -0.387 log Af - 0.5 (7)

g

The two 1lines have the same intercept (n = -0.5 which is also
their point of intersection.

The variation of Ai with tack“rate was found to be

_ t t (2
log A; = Tog A, [0.816 - 0.184 (t_o) + 0.368 (K) ] (8)

where Aio the value of’Ai at optimum tack rate and

tack rate in gallons/square yard

t

o the optimum tack rate

Similarly, the variation of Af with tack rate may be expressed as

- t )2
g = log A [0.364 + 0.564 (£;) +0.072 ( 1;0) ] (9)

Equations (8) and (9) are valid for tack rates between 50% and

log A

200% of the optimum value. The shift of A-value with tack rate can be
calculated with these two equations. The optimum tack rate for Fabric

G was 0.20 gal/sq. yd.
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Computation of Fracture Toughness

Fracture toughness is also called the "crack extension force" in
some fracture mechanics applications. Because the term "fracture
toughness" indicates an energy density, it will be the preferred term
in this discussion. A precise definition of the term will be given
in what follows:

The load that is required to open the crack to its full width
decreases as the crack length increases. A typical plot of the load,
P, against the crack opening, U, for two successive load cycles is
shown in Figure F-6. The area under each curve has the units of (1bs x
inches) or work. The area was measured using a planimeter for several
load cycles during each test on an overlay sample and this successively
decreasing sequence of areas was plotted versus number of cycles on
Togarithmic paper as shown in Figure F-7 for the control specimen and
in Figure F-8 for Fabric G at the optimum tack rate. The equations for

these curves were of the form

E = ¢cN d (10)

i

where E the tensile work in one cycle, in-1b and

the number of cycles when E was measured.

N

Table F-6 lists the values of c and d obtained for each of thé
asphalt concrete specimens with and without fabric. The constant, c, is
the initial work that must be done to open the crack. The power, d,
indicates the toughness of the specimens. The smaller the number d is,
the more resistant is the overlay to further crack extension. The rate
of change or work with each cycle is given by taking a derivative of

Equation 10 with respect to the number of cycles:

dE

E oo can®T (11)
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TABLE F-6. Tensile Work Coefficients .

Test Tack

Code Rate c d

Control None 22.8 -0.527
A Opt. 19.8 -0.500
D Opt. 14.2 -0.343
E Opt. 22.7 -0.439
F Opt. 18.9 -0.349
G Opt. 16.4 -0.400
G Low 12.4 -0.440
G High 12.8 -0.393
G* Opt. 13.2 -0.291
H Opt. 21.0 -0.423

*Test Specimens were more than 1-year old.
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The rate of change of work with crack length is given by dividing

Equation 11 by Equation 3, as follows:

de
dE N _ cd n4!

dc 'gﬁ ab Nb-]

. cd ,d-b
ab (12)

The rate of change of work per unit area of the crack is obtained
by dividing Equation 12 by twice the width of the overlay specimens,

that is, 6-inches.

dd _ 1 d _ 1 cd d-b
A "6 *d & a N (13)
The quantity

-1 <

is the initial rate of change of work per unit of increased crack
surface area and is defined here as the "fracture toughness," G.

Table F-7 shows the values of fracture toughness derived from
each of the overlay specimens tested. (Note: G is a negative number.)

The three major material properties which determine the size of
the A-coefficient in Paris' Law are elastic modulus, E, tensile
strength, o » and fracture toughness, G. Because most of the overlay
specimens included fabrics with different properties, it is reasonable
to assume that some fabric propertiegvmay be strong determining factors

on the size of the A-coefficient.

Summary

The number of thermal cycles which will cause the failure of an
overlay is given by integrating Paris' Law,
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TABLE F-7, Fracture Toughness Properties.

Test Tack Fracture Toughness,
Code Rate G, in-1b/in?
Control None -10.12

A Opt. - 8.29

D Opt. - 4.92

E Opt. - 8.29

F | Opt. - 5.12

G Opt. - 6.79

G Low - 5.94

G High - 6.21]

G* Opt. - 4.41

H Opt. : - 9.33

*Test Specimens were more than 1-year old.
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where

Ng =ft0 i
a A(K)" (15)

a = the length of the crack after the first crack opening
which is given in Table F-3.
t = the thickness of the overlay.

the number of repetitions to failure.

=
—+
[{]

K = the stress intensity factor which is a function of
the elastic modulus, the crack opening, and the

crack length.

A,n = the fracture properties which can be predicted by the

equations developed in this report

The procedure for determing A would be as follows:

1.

With ample data, select regression techniques can be utilized
to determine expressions for the Aio and Afo coefficients
using basic fabric properties or asphalt requirements as
independent variables. Calculations using several models will
give confidence in the value of log A0 that is finally adopted.
Use Equation 8 (for Ai) or Equation 9 (for Af) to determine
the value of log A if some level of tack rate other than
optimum is used.

Use Equation 6 (for "i) or Equation 7 (for nf) to determine

the value of n that must be used in the calculation of the

number of cycles to failure.

The fracture properties of overlays can be altered substantially

by including fabrics in them. As a general rule, it is wise to place

the fabric at lTeast the distance, a, (from Table F-3) above the old

cracked pavement. This can be done by placing a level-up course
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against the old pavement, then placing the fabric, and then laying
down a riding course above the fabric. Cracks can be retarded greatly
by increasing the tack rate above the optimum, which may be partly a
result of increasing asphalt content or decreasing air voids in the

surrounding asphalt concrete.
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Appendix G

Direct Tension Test Data
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TABLE G2. Physical Properties of Direct Tension Specimené and Test Results.

Fabric | Tack Specific| Air Voids,*| Tensile Stress|Tensile Strain
Code Coat Gravity*| percent @ Failure, @ Failure ¢
psi in/in x 10
Low- 2.34 6.1 72 5100
A Opt- - 2.30 11.4 97 5000
High- 2.36 5.1 127 8100
D Opt- 2.29 7.7 94 4900
Low- 2.30 7.0 152 4600
E Opt- 2.20 11.4 51 4500
High- 2.34 6.0 99 4900
Low- 2.33 6.2 110 6200
F Opt- 2.28 8.3 67 3600
High- 2.35 5.5 124 8300
Low- 2.37 4.9 87 5100
G Opt- 2.27 8.5 112 4700
High- 2.36 5.1 157 5600
CONTROL None 2.32 10.3 77 3700

*Properties were measured prior to sawing beams into individual
test specimens .
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