
Modeling Reliability in Pavements 

by 

Robert L. Lytton 
Professor 

Texas A&M University 

and 

Dan G. Zollinger 
Assistant Professor 
Texas A&M University 

prepared for presentation and publication 
by the 

72nd Annual Meeting 
of the 

Transportation Research Board 
Washington, D. C. 

January, 1993 



ABSTRACT 

The correct application of reliability to pavement design is essential 

to the objectives of pavement design which are to produce quality pavements 

to serve the traveling public in comfort and safety, being built to be 

durable in service at a minimum life cycle cost. Reliability is a technical 

term which is defined in mathematical terms and is therefore objective in 

its application. As applied to pavements, it makes use of either empirical 

or mechanistic pavement performance equations to predict an expected value 

and variance of either the traffic or the distress for which the pavement 

must be designed. Explicit expressions are found for the quantities in 

terms of the expected values and coefficients of variation (cv's) of the 

independent variables which appear in the performance equation(s). Although 

ample data are available to determine these for all pavement independent 

variables, experienced engineers can estimate realistic values of the cv's 

almost as well as they can be measured. 

Several examples of the application of reliability to pavement 

performance models are given in this paper including: 

1. Proper methods of analyzing field data to develop an empirical 

equation for the number of load cycles to reach pavement failure 

due cracking. 

2. Pavement performance equations for cracking which incorporate 

reliability in determining the number of load cycles for which the 

pavement should be designed. 

3. Relations of reliability to construct specifications. 

4. Methods of incorporating reliability into the design of overlays 

while taking into account the variability of the cracking that 

i i 



occurred in the old pavement. 

In all cases, the mathematical nature of reliability is demonstrated. 

It is because of its ability to be defined in precise, unambiguous terms 

that makes it simple to apply and possible to set objective standards for 

the performance of pavements while taking into account the variability of 

the factors which control the performance. Reliability must be applied 

correct 1 y in designing pavements in order to achieve its objective of 

providing an acceptable level of risk that pavements will carry the 

traveling public in comfort and safety while being built durably at minimum 

life cycle costs. 

;;; 
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Modeling Reliability in Pavements 

INTRODUCTION 

The object of any pavement design procedure is to produce quality 

pavements which will perform according to expectations of the design 

engineer and the traveling public. These expectations must be achieved by 

simultaneously considering the paving materials to be used and their 

behavior under different traffic and environmental conditions many variables 

are involved in predicting the performance of a pavement, which is essential 

to the design process and they include the traffic mix and growth rates, 

rehabilitation timing, subgrade conditions, construction and aggregate 

sources and characteristics, material strengths, and weather among others. 

Whether a new pavement or a rehabilitated pavement is being designed, 

it must be stated plainly that what i~ being designed does not yet exist. 

Design is the process whereby the variability and uncertainty that exists 

in the factors that will control the performance of the pavement are taken 

into account in providing an acceptable level of risk that the pavement will 

meet its performance expectations. This is what reliability is all about. 

Reliability is defined simply as the probability that something will 

not fail. To put it another way, reliability is 1.0 minus the risk of 

failure. This definition of reliability introduces several terms warranting 

definitions: failure, probability, and risk. 

Failure. Failure in pavements occurs when it can no longer function 

as it was intended. Pavements are intended to serve the traveling public 

in comfort and safety in the most economic manner possible, being built to 

be durable in service at a minimum life cycle cost. Translated into 



Lytton and Zollinger 2 

technical te-rms, "comfort" is diminished by pavement roughness; ••safety" is 

decreased by rutting {in asphalt pavements) and loss of surface friction; 

"durability" is reduced by the premature need to repair, rehabilitate, or 

reconstruct the pavement due to distress of any type; and "life cycle costs" 

include both initial construction costs, subsequent maintenance and 

rehabilitation costs, and user costs associated with user time delay costs, 

and excess user vehicle operating costs caused by the repair operation. 

"Fa i 1 ure" is then defined techn i ca 11 y as the appearance of a pavement 

condition which requires some form of maintenance of rehabilitation. Thus, 

any of the following constitute failure of a pavement: 

{a) fatigue {alligator) cracking of an asphaltic concrete pavement 
above an acceptable limit in area or severity; 

{b) rutting depth of an asphaltic concrete pavement greater than an 
amount required to promote hydroplaning under wet weather 
conditions; 

{c) excessive fatigue cracking of a concrete pavement; 

{d) faulting of a jointed or transversely cracked concrete pavement 
above a level that produces a rough ride or the likelihood of rapid 
deterioration of the joints or cracks; 

{e) spalling of a concrete pavement which approaches a safety hazard, 
a rough ride, or a rapidly deteriorating pavement; 

{f) surface friction coefficient dropping below the level required to 
reduce wet weather accident rates to an acceptable minimum; 

{g) roughness of the pavement rising above a level that produces an 
unacceptably rough ride to the traveling public; 

{h) the appearance of any other condition that requires repair and 
traffic delay. 

Probability. Probability is a number between 0 and 1 indicating a 

degree of likelihood of the occurrence of an event: 0 indicates that it 

will never occur and 1.0 indicates that it will certainly occur. Numbers 

in between 0 and 1 are measures of the likelihood of such an occurrence. 
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Risk. ·The adequacy of a pavement design is generally determined by 

assessing the risk associated with the ability of the pavement system to 

acconunodate the imposed demands imp 1 emented by the highway agency, the 

public (the user), and the environment. Accepted levels of accuracy, of 

reliability, or of risk, are realistically subject to the balance of 

economic judgements and user benefits to be realized. In highway pavement 

design, the latter plays a greater role because of the more direct impact 

upon the traveling public. The need for a deterministic method that 

describes the level of adequacy in highway design has been well recognized 

for several years. 

"So that designers can better evaluate the reliability of a 
particular design, it is necessary to ... predict variations in the 
pavement system response due to statistical variations in the input 
variables, such as load, environment, pavement geometry, and material 
properties including the effects of construction and testing 
variables." [1] 

Several definitions of design reliability have been provided in recent 

highway research literature in terms of probabilistic concepts. An example 

is in the AASHTO design guide [2]: 

"Reliability is the probability that the pavement system will 
perform its intended function over its design 1 i fe and under the 
conditions (or environment) encountered during operation." 

The same source also defines reliability with respect to specific types 

of pavement distress: 

"Reliability is the probability that any particular type of 
distress will remain below or within a permissible level (as defined 
by the design engineer) during the design life."[2] 

The definition of reliability in the textbook by Harr is as follows: 

"Reliability is the probability of an object (an item as a system) 

performing its required function adequately for a specified period of time 

under stated conditions. This definition contains four essential elements: 
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1. Reliability is expressed as a probability 
2. A quality of performance is expected 
3. It is expected for a period of time 
4. It is expected to perform under specified conditions". [3] 

This definition of reliability applied to pavements, means the 

probability that it will not fail to perform any of its intended functions. 

These functions, as noted above, pertain for an extended analysis period 

which includes both the initial and subsequent performance periods under the 

in-service conditions of expected traffic and weather. Risk is the 

probability of failure in this function and is related to the reliability, 

since the sum of the two must always equal 1.0. 

To quote again from the book by Harr [3], "Failure is highly 

qualitative and subjective; reliability, on the other hand, can be defined, 

quantified, tested, and confirmed." 

Thus, design reliability is not subjective or qualitative, but 

necessarily mathematical and based upon mathematical principles and 

fundamentals. The definitions are rigorous and incontrovertible; they are 

not a subjective matter of opinion. The fundamentals and concepts in this 

paper can be found in professional journals, textbooks, and reference works 

on the subject of probability, statistics, and reliability. Some of this 

applications to pavements are original with this paper. 

The application of reliability to pavements makes it possible to set 

objective standards of performance and to pro vi de for the se 1 ect ion of 

pavements which will best serve their intended functions of carrying the 

traveling public in comfort and safety while providing this service with 

durable materials placed and maintained at the least life cycle costs. 

Reliability must be applied correctly to pavements in order to achieve this 
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variables. -He also showed examples of the number of simulations to achieve 

a particular level of reliability. It is pointed out that the number of 

simulations or trials increase in proportion to the power to the number of 

independent variables. 

Several approximations are used for the expected values and variances, 

including Cornell's approximations which are: 

E[g{x)] - g{Jl) (1) 

Var[g{x)] - [g' {I'}Yvar{x) (2) 

E[g{x,y)] - g {l'xt l'y) {3) 

Var[g {x ,y)] - gx2 {1'x'l'v) Var{x) + gv2 {1'x'l'v) Var{y) + 2gxgv cov{x, Y) (4) 

This is also called the first order, second moment (FOSM) approximation. 

The Rosenbleuth method [4] does not make use of the Taylor series but 

instead uses calculated values of the function of x and y at different 

points, with each calculated value weighted to produce estimates of the 

expected value and variance of the function. This method is known as the 

Point Estimate Method (PEM) [4] and is useful from the standpoint that the 

existence and continuity of the first and second derivatives of the function 

f{x) is not a strict requirement. Point estimates of the function {for one 

variable) can be used in an expression for the expected value: 

E (g (X)) = ! (g (X). + g {XL) {5) 

This expression expanded to multiple variables {m) [13]: 

E (g{x)) 
1 ' 

= - (g{x) •••••• + g{x)-••••• + g{x)--•••• + g{x)------) 
2m m m m m 

{6) 
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objective, and hence its ultimate importance. Some definitions of terms 

used in reliability are given in Appendix I. 

METHODS OF RELIABILITY ANALYSIS 

Several methods of reliability have been developed which provide the 

distribution of random variables. These methods can be categorized into 

three types. 

1. Exact methods, 
2. First order, second-moment (FOSM) method, and 
3. Point Estimate Method (PEM) 

Each of these methods have distinctive characteristics and assumptions. The 

exact methods are usually computer-oriented and require several numerical 

integrations. In these methods, the probability distribution function must 

be known for each of the component (independent) variables associated with 

a random vari ab 1 e function. In some instances, the unknown component 

distributions can be assumed to be normal, log normal, or uniform. More is 

given about the selection of probability distributions subsequently. 

Numerical integration and Monte Carlo methods are included in this category. 

Although mainframe computers are mandatory, the main advantage of these 

methods is that they provide a complete probability distribution of the 

random, dependent variables. The disadvantage is that the output may be no 

better than the inputs (if they are assumed) and that considerable computer 

time is involved. In particular, methods such as the Monte Carlo method 

simulates random values or trials of the variable (associated with some 

probability distribution) based on the generation of random number inputs 

for the independent variables. Harr [3] showed how the randomly generated 

inputs can be associated with the assumed distribution of the independent 
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The total number of variables involved in equation 14 are 2m. The values 

of the function f(x) at the + and - levels correspond to the mean value of 

the first variable x plus or minus the associated standard deviation of the 

x variable. The first variable at minus one standard deviation is used to 

evaluate the second term in Equation 6 while all other variables are at plus 

one standard deviation. Numerous other methods are in use to estimate the 

expected values and variances of functions, but they will not be covered 

here. Because they are found in most textbooks and reference books on the 

subject of reliability. 

SELECTION OF PROBABILITY DISTRIBUTIONS 

The choice of probability distribution may be a function of 

mathematical convenience, such as the normal or log-normal distributions. 

These models may be selected even when no clear basis is provided. However, 

the type of probability model has been suggested to be related to the state 

of knowledge ava i1 ab 1 e [3] . If nothing is known about a probabil i ty 

distribution, then the only information available may be that of experience. 

Experience may not be able to substantiate that two probabilities are 

different in which case they must be assumed to be equal. The level of 

information may be evaluated in terms of the principle of maximum entropy 

which states the selected probability distribution should reflect the 

maximum entropy subject to any additional constraints imposed by the 

available information. Table 1 itemizes maximum entropy probability 

distributions for a list of given constraints. 
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Table 1. Maximum Entropy Probability Distributions [3] 

Given Constraints Assigned Probability 
Distribution 

J.b f(x) dx 
Uniform 

= 1 

J.b f(x) dx 
Exponential 

= 1 

Expected value 

J.b f(x) dx 
Normal 

= 1 

Expected value, standard deviation 

J.b f(x) dx 
Beta 

= 1 

Expected value, standard deviation, 
(minimum and maximum values) 

range 

J.b f(x) dx 
Poisson 

= 1 

Mean occurrence rate between arrivals 
of independent events 

An assumed theoret i ca 1 di stri but ion may be verified or disproved 

statistically by goodness-of-fit tests mentioned earlier. The chi-square 

test for distribution is a method to test the validity of an assumed 

distribution model. This test method compares the observed frequencies n1 , 

n2 , n3 , ••• , nk of k values of the variate to corresponding frequencies e1 , 

e2 , e3 , ••• , ek of an assumed theoretical distribution. The degree of 

goodness of fit is evaluated from the distribution of: 

(7) 
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This quantity approaches the chi-square (x:} distribution for k-1 degrees 

of freedom as n approaches infinity. If this quantity is less than the 

value of C1.a,f taken from the appropriate (x:} distribution with a 

cumulative probability of (1-a) at a significance level a, the assumed 

theoretical distribution is acceptable. Otherwise, the distribution cannot 

be validated at the given level of significance. 

The Kolmogorov-Smirnov test for distribution is another goodness-of-fit 

test involving the comparison between the experimental cumulative frequency 

and an assumed theoretical distribution. If a large difference exists, then 

the assumed distribution is rejected. This method is employed by developing 

a stepwise cumulative frequency function {S"(x)) based on re-arrangement of 

the sample data in increasing order [5]: 

0 for X< X1 

Sn{X) k for xksx<xk., = 
n 

{8) 

1 for X ~ xn 
where 

x,, x2 , ••• ,x" = ordered values of sample data 
n = sample size 

As illustrated in Figure 1, this test is based on the maximum difference 

{D") between S"{x) and an assumed theoretical distribution function F(x) over 

the range of X. Therefore the value of Dn is 

max 
Dn = X I F{x) - Sn(x) I (9) 

and is a random variable whose distribution depends on n and, for a 

significant level of a, is compared to a critical value o: . This critical 

value is defined by: 



Lytton and Zollinger 10 

(10) 

If the observed D" is 1 ess than the tabula ted va 1 ue of o: , then the 

proposed theoretical distribution is assumed as acceptable for the given 

level of significance. 

Figure 1. Empirical cumulative frequency vs. theoretical distribution 
function. 

CHARACTERIZATION OF THE VARIABILITY OF INDEPENDENT VARIABLES IN PAVEMENT 

PERFORMANCE EQUATIONS 

The variability observed in highway performance is primarily derived 

from variability in pavement materials, layer thicknesses, temperatures and 

moisture, in the frequency and magnitude of applied traffic loads and in the 

distribution of pavement distress along the length of the pavement. The 
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coefficient ·of variation {cv) serves as a measure of the dispersion of a 

particular variable and provides the basis by which individual variabilities 

can be included in the overall pavement reliability analysis (as suggested 

by the FOSM Method of reliability). The coefficient of variation of various 

civil engineering materials estimated as shown in Table 2 [3]. As is seen 

in Table 2, coefficients of variation of natural material properties vary 

between 2 and 30 percent. The 2 percent figure indicates a very narrow 

range and 30 percent is a very wide range. It is a common observation that 

experienced civil engineers can estimate the coefficient of variation of a 

material property with which they are familiar very closely, especially if 

they are familiar with the quality control exercised in the construction 

process. In the absence of any knowledge of the quality control, a maximum 

value of the cv of 30 percent will be a conservative assumption. 

Pavement layer materials are constructed, rather than natural, and typical 

values of their coefficients of variation for pavement materials are shown 

in Table 3 and in reference 6. 

Once important parameters such as the expected value and variance {as 

a function of the various cv' s) are determined the probability { P) of 

pavement failure, or the reliability (R) is found: 

P = Prob [F {xi) ~ F 0] = 1 - R (11) 

where 

F(xi) = the functional relationship for a given pavement distress 
for a given period i 

F0 = the failure condition for a given pavement distress 
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Table 2. Typ;cal Coeff;c;ents of Var;at;on [3] 

Parameter 

Porosity 
Specific gravity 
Water content 

Silty clay 
Clay 

De~ree of Saturation 
Un1t weight 
Coefficient of permeability 

Compressibility factor 
Preconsolidation pressure 
Compression index 

Sandy clay 
Clay 

Standard penetration test 
Standard cone test 
Friction angle rP 

Gravel 
Sand 

Coefficient of Variation, % 

Soil 10 
2 

20 
13 
10 
3 

(240 at 80% saturation 
to 90 at 100% saturation) 

16 
19 

26 
30 
26 
37 

7 
12 
40 

12 

c, strength parameter (cohesion) 
Structural Loads, 50-Year 

Maximum 
Dead load 
Live load 
Snow load 
Wind load 
Earthquake load 

Structural steel 

10 
25 
26 
37 

>100 
Structural Resistance 

Tension members, limit state, yielding 11 
Tension members, limit state, tensile strength 11 
Compact beam, uniform moment 13 
Beam, column 15 
Plate, girders, flexure 12 

Concrete members 
Flexural strength, reinforced concrete, 
Flexural strength, reinforced concrete, 
Flexural, cast-in-place beams 
Short columns 

Thickness 
Flexural strength 
Crushing strength 
Flow velocity 

Moisture 
Density 
Compressive strength 
Flexural strength 
Glue-laminated beams 

Live load 
Snow load 

Grade 60 
Grade 40 

Ice 

Wood 

11 
14 

8-9.5 
12-16 

17 
20 
13 
33 

3 
4 

19 
19 

18 
18 
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Table 3. Pavement Materials Coefficients of Variations 

Property Coefficient of Variation, % 

Layer Thickness 
Surface 5 - 12 
Base 10 - 15 
Subbase 10 - 15 

Elastic Modulus 
Surface 10 - 20 
Base 8 - 20 
Subbase 10 - 20 
Subqrade 10 - 30 

Fluid Content 
Surface - Asphalt 5 - 10 
Surface - Water 5 - 10 
Base - Water 10 - 15 
Subbase - Water 10 - 15 
Subgrade - Water 10 - 20 

Density 
Surface 5 - 10 
Base 10 - 15 
Subbase 10 - 20 
Subqrade 10 - 20 

Tensile Strength 
Surface - Asphalt 10-15 
Surface - Concrete 10-15 
Base - Stabilized 10-15 

The performance condition corresponding to the level of reliability is: 

(12) 

where 

Fz = the predicted performance condition reached with a probability 

1-R 

ZR =value of the variate corresponding to the reliability level, R 
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It is obvious that the simple formulation provided above gives a straight 

forward and definable relationship between the mean level of performance and 

the performance at a given level of reliability. It is noted that this 

process of determining design re 1 i ability can be app 1 i ed once the mean 

values and cv's of the variables used to predict the performance of the 

pavement are known or can be estimated as must always be done in design. 

The design process does not require the amassing of large quantities of 

field data over long periods of time before reliability can be used in 

design. Such data, when collected over time, can be used to refine the 

estimates of the means and cv's used in design and can be used to refine and 

calibrate the performance equations which are also used in design. This 

refinement process is a desirable use of these data, but is not a 

prerequisite for applying reliability in design. Instead, reliability can 

be computed using any pavement performance equation when estimates of the 

means and cv's of the independent variables are inserted into it. Examples 

of such equations which are presented below will illustrate this point. 

APPLICATION OF RELIABILITY 

The methods of applying reliability which are discussed in this section 

are applicable to any deterministic pavement performance model. The first 

order, second moment (FOSM) approach is used throughout this discussion, but 

it applies to any other formulation of reliability such as simulation or the 

point estimation method as well. 
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FORMULATION-OF RELIABILITY FOR DIFFERENT PROBABILITY DENSITY FUNCTIONS 

The reliability factor, ZR, may be computed for any probability density 

function by using the following steps: 

1. Find the mean, p. 

2. Find the variance, a2
• 

3. Find the area beneath the probability density function, from its 
lower limit, to the "maximum acceptable•• upper limit, xmax. This 
area is the reliability level, R. 

4. Calculate the reliability factor, ZR, from 

X - IL Z • max ,. 
R a (13) 

This process is illustrated in the graph below. The reliability factor 

can be computed for any probability density function, p(x). The risk of 

failure is 1.0 minus the reliability. 

p(z) 

Risk- 1-R. 

Figure 2. Reliability Factor, ZR. 

This process is straight forward when the PDF, p(x), is a normal 

distribution. The mean and standard deviation are p and a, respectively. 

With the log normal distribution and the Weibull distribution, expressions 

for the mean and standard deviation have been derived and are discussed in 
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Appendix II -and are found in reference books. The known results for these 

distributions are given below for "damage", D, which is defined as in the 

AASHTO design equation, as a ratio of some level of distress to its maximum 

acceptable value. 

D = distress level 
maximum acceptable distress level 

Normal 

D- D 
X = 

log Normal 

X = 
ln D - E[l n D] 

u {ln D) 

E[l n D] = ). 

var[ln D] = 12 

E {D) = o = exp f + ~] 
var {D) = u2{D) = exp[2>. + -y2][exp{-y2

) - 1] 
cv 2 {D) = 

var {D) - var[lnD] 
02 

Wei bull 

X = D 

ii = E(x) = E (D) = ! H + ~] 

var(x) = var(D) = : 2 [r r <) -r2 
[1 + ~] 



Lytton and Zollinger 17 

). =- the Wei bull sea 1 e parameter 

1 = the Wei bull shape parameter 

f{ ) = the Gamma function 

With both the log normal and Weibull distributions, if the expected 

value and variance of the damage is known, then both the scale and shape 

parameters may be found. 

ANALYSIS OF NUMBER OF LOAD APPLICATIONS TO REACH FAILURE, Nt 

Applying what is known concerning pavements also applies to the form 

of the equation which defines the relation between cracking and the number 

of load applications. It is known that cracking does not occur at the same 

time over the entire length of the pavement. It is also known that it does 

not occur uniformly at all locations along a pavement section of uniform 

construction. Thus, it is known and has been represented in mechanics as 

the result of a stochastic process. Analysis of the cracking behavior of 

a pavement as a function of estimated traffic, if it is to respect what is 

known of its behavior, must make use of the forms of equation that are used 

in probability. 

The question of which form of equation to use may be posed by asking 

which of the relations {a), {b), or {c) in Figure 3 should be used to relate 

the expected value of cracking {c) to the expected value of the traffic load 

application {N). 

With cracking data, one is faced with analyzing the relationship 

between two probabilistic quantities, traffic and cracking. The recorded 

traffic is an estimate of the actual traffic and, as with all traffic 



Lytton and Zollinger 

'I' 
c-~·---------------------------

Meaaw:ed 
Cracking 

Expected - / 1:i!: c a-c-+ A'".j. +-----:::_>_·>.-~-~~-~--~r. 

(a( .. / ...... 
... ·· 5bf. ..· 

..... (c-} 
... · .. ····· .·· 

...... · ~ ... · ... 
·::>··· i 

~ I N 

N 
Expected Value 

' , 
Estimated Traffic 

Figure 3. Possible Relations Between c and N for a Single Pavement 
Section. 

18 

estimates, has an expected value {N) as its most likely value, and a likely 

range within which the actual value will fall. Thus, the estimate of N, the 

number of traffic load applications, has a probability density function 

{PDF) which can be characterized by its mean {~) its standard deviation {a} 

and its mathematical form. Commonly used mathematical forms used with 

traffic data are normal, log normal, and Poisson. 

The recorded cracking is also a mean value {c) measured over an entire 

pavement section, although the occurrence of cracking in the section is by 

no means uniformly distributed. Instead, c is arrived at by measuring all 

of the cracking along the pavement section and dividing by the total area 

of pavement that could be cracked as a maximum. Thus, the recorded value 

of cracking {c) is also an estimate of the expected value and represents a 

range of values which are likely to occur on the pavement from point to 
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point. This· indicates that cracking also has a probability density function 

which is represented by a mean and a standard deviation and its mathematical 

form. Commonly used forms of equations used to describe cracking frequency 

are the log normal, Weibull, and Gumbel. 
-

This now leads to the question of how c and N are re 1 a ted to one 

another. In the first place, it is recognized that this relation, whatever 

it is, is unique to the pavement on which it is measured. Secondly, it is 

recognized that the value of c has absolute limits of 0 and 1. Any 

mathematical form of the relation between c and N that allows c to go below 

0 or to go above 1 is automatically invalid. Thus the relations: 

and 
(24} 

(25} 

which are illustrated in Figure 3 as curves {b) and {c) are inappropriate 

mathematical forms to use in describing the relationship between c and N. 

On the other hand, an appropriate mathematical relation as illustrated 

in Figure 3, curve (a}. The form of this equation is in accordance with 

viscoelastic fracture mechanics and is: 

c = Prob [Damage > 1.0] {26} 

where 
k L n; 

i-1 N1; 
Damage = {27} 

n; = the number of load applications of load level, i 

Nfi = the number of load applications of load level, i, to cause 
failure. 

If equivalent load applications are used in the traffic estimates, then 

the damage equation simplifies to: 
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Damage -
Nti 

N 
(28) 

When the damage ratio equals 1.0, at a given spot on the road surface, 

the crack, which has been working its way through the pavement, appears on 

the surface. The relation between the mean values of cracking and traffic 

load applications is governed by the probabilistic relationship that the 

mean value of cracking (c) is related to the traffic estimate (N) by the 

probability that the damage ratio, N/N1, is equal to 1.0. That is: 

where 

X = 

D = 
-
D = 
O'o = 
p{x) = 

c - J, ... p(x) dx (29) 

D- 0 for a normal distribution 

damage = 
N 

mean value of damage corresponding to N 
the standard deviation of damage 
the probabil i ty density function that is appropriate for 
cracking. This is, typically, a log normal, Gumbel, or 
Weibull distribution. 

The definition of x can be defined in terms of Nand N1 as follows (see 

Appendix III): 

N - N 
X • 

UN [ + cv 
2

(N1} ]i r cv 2 (N) 

dx -
dN 

uN [ + cv
2(N1)]i r cv 2 (N) 

The probability density functions that are appropriate for this 

relation are described below (described in Appendix II): 
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Gumbel ·(Type II Asymptotic Form): 

p(x) =PI x _,, •/fl e -(~} (32a) 

(32b) 

where 

B = shape parameter (k) 
p = scale parameter (v") 
x = damage, D = N/Nt 

The cumulative probability distribution function, P(x), which 

corr~sponds to the Gumbel PDF and fits through the data points relating c 
and N is: 

where 

Weibull: 

'Y 
). 

= 
= 

C = P(x) = exp [- {: rJ 
and i = D - N 

Nt 

p(x} = -y.A(.Ax)Y-1 exp - {.AxY 

shape parameter (B) 
scale parameter (1/a} 

(33} 

The cumulative probability distribution function, P(x}, which 

corresponds to the Weibull PDF is the following exponential function, which 

relates to c to N for each pavement section: 

c = P(x) = 1 - exp [- (.Axt] 

and i = o - N 
Nt 

(34a) 

(34b) 
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These are the functions that should be used to fit the data recorded 

for each pavement section, one section at a time. Under most circumstances, 

only two points are known for each pavement section: 

1. The origin where N = 1 and the cracking is an assumed small 
value, say 0.001. 

2. The actual measured point, c and N ( x represents N}. 

The scale and shape parameters can be found for each pavement section 

using these two points on the curve, either the cumulative Gumbel or the 

Weibull exponential function. The two parameters, in turn, can be seen to 

depend upon the following: 

1. The current va 1 ue of. the expected va 1 ue of the number of traffic 
load applications, N. 

2. The variance of the traffic estimate, Var (N}, (or standard 
deviation uN = [Var (N}]%} and the coefficient of variation (cv} 
of N, which is [Var(N}/N2]%. 

3. The coefficient of variation of the number of load cycles to 
reach failure, cv(N1}. 

It is possible, then, taking one pavement section at a time to 

determine the value of N corresponding to some pre-set value of c 

corresponding to some pre-set va 1 ue of cmax which is determined to be a 

maximum acceptable value. This is the value of N1 which is included in the 

definition of damage (See Appendix A}. 

With the Gumbel cumulative distribution, the scale and shape factors, 

p and B, can be determined by linear regression, one pavement section at a 

time using the equation: 

(35) 
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where 

23 

yi = 1 n [- 1 n ci] 

b = -~ 

a = ~ ln p 

Once these factors are known, the value of Nt can be found using the 

following formula: 

Nt = ___ P __ 

[- 1 n {cnwx}]j 
{36) 

Values of Nt can be determined for each pavement by this means. The 

value Nt that is determined is a unique property of each individual pavement 

section, and is a value by which each pavement may be compared because it 

represents the number of load applications at which a standard condition of 

distress of each pavement is reached. 

By similar means, the scale and shape factors for the Weibull 

exponential function may be formed, by using a linear regression technique 

and the two known points on the curve, using the following equation: 

Yi = a + b xi {37) 

where 

Yi = ln [- ln (1 - ci) l 
b = 1 
a = 1 ln A 
A = .e.xp {a/b} 
xi = Ni 



Lytton and Zollinger 24 

Once these coefficients are known, the value of Nt can be found using 

the following formula: 

[ ]

1 
- 1 - -r Nt = - -1 n (1 - c,J 

). 
(38) 

-The va 1 ue of Nt that is determined in this way may be used as the 

dependent variable in an expression that represents the number of load 

cycles to reach failure as derived from fracture mechanics. 

The log normal probability density function defines x in a slightly 

different way, as follows: 

where 

D 

E[D] = 0 

). 

r2 

cv 2 (D) = Var (D) 

iP 

a2 (D) = Var (D) 

X = ln D -E[ln D] 
a (ln D) 

N = 
Nt 

= exp t + ~2] 
= E[l n D] 

= Var [ln D) 

- Var[ln D] 

= exp[2>. + r
2
] [exp(r2

) - 1] 
The probability density functions of the damage relation is: 

p(x) = ro~ exp t ! [~]J 

(39) 

(40) 
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The cumulative distribution function, p(x), which fits through the 

points relating c toN is given by: 

c = J ~In 17 p (X) dx 
'i7'1lii1ll 

The expected value of the damage, D, is approximated by: 

E(D) = D :: N 
Nt 

The variance of the damage, D, is approximated by: 

Var (D) - iP [cv 2 (N) + cv 2 (N1)] 

which may also be written as: 

~ cv 2 (N} ]~ 
(](D) = D cv (N) + f 

cv 2 (N) 

(41) 

(42) 

(43) 

(44) 

The determination of the two constants, A and r, can be accomplished 

using non-linear regression by minimizing the sum of squared errors. 
2 

L E~ = L [ci - J oo p(x,A,r) dx]
2 

i•1 -InN; 
(45) 

for each pavement. The two known pairs of points are: 

--c N 

E 1 
--c N 

and the value of E is set at a small value around 0.001. The value of N1 can 

be found by the same trial-and-error process by finding the value of N1 that 

produces a value of the area of cracking equal to c~. 

A common, but mistaken, approach to the characterization of the 

cracking of pavements is to plot a graph of the (c - N) pairs from a number 
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of pavements and find two coefficients by regression analysis which fit 

through the cloud of data points. 

A curve of the form: 

(46) 

is assumed and the mean-squared error of this is assumed erroneously to be 

the standard deviation of the cracking (PDF (a) in Figure 4) or the standard 

deviation of the traffic, N (PDF (b) in Figure 4) at a set value of c is 

assumed erroneously to be the standard deviation of the number of load 

applications at that level of cracking. 

It is recalled that this graph is a graph of the means of both cracking 

and load applications. The standard deviation of the means of sampled 

populations is known not to be equa 1 to the standard deviation of the 

population. In fact, if the probability density function of N were normal, 

the relation between the standard deviation of N and the standard deviation 

of N is known to be: 

where 

n = 

= 

= 

(47) 

the number of pavements sampled 

the standard deviati~n of the means, as it can be derived 
from a plot of c vs N. 

the standard deviation of the actual traffic load 
applications. 
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Pavement 
Cracking (CJ 

(a) 

• 
• • Set 'Value of N 

• • • .. ! 
Load Applications (N) 

Figure 4. Pavement cracking versus load application. 
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-
Thus, if aN is found to be, say 20%, of the mean traffic level, N, from 

a population, n, of 36 pavements, then the standard deviation of the 

traffic, aN, is 120%, following from the relation given above. Although the 

(48) 

relation is valid for a normal distribution, a similar relation applies to 

all probability density functions. Furthermore, the use of aN to estimate 

the reliability of a pavement design is incorrect, no matter what the 

probability density function of the actual traffic. As referred to in 

Chapter 5 and stated plainly here, there is no wav that the standard 

deviation of either the traffic estimate (aN) or the cracking area (ac) can 
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be determined from collections of measured expected values of cracking (c) 

and estimated traffic (N). Any standard deviation derived from such data 

will always be too small by a large multiplying factor. 

DETERMINATION OF THE NUMBER OF LOAD CYCLES TO REACH FAILURE, ~ 

The number of load applications to reach a specific level of 

cracking can be determined by the analysis of field data, as described 

before. This same number of load cycles to reach a specified level of 

cracking, Nt, can be determined by the use of laboratory measurements and 

analytical calculations. One such method of relating the field value of N1 

to the ca 1 cul a ted va 1 ue of the whee 1 1 oad strain at the bottom of the 

asphalt layer is called the "phenomenological approach." A similar method 

is used to predict the number of load cycles to reach a specified level of 

cracking in concrete pavements, and the relation is between Nt and the wheel 

load stress at the bottom of the concrete layer. 

In the asphalt pavement, the phenomenological equation is: 

N. _ K, [ ~ r ( 49) 

In the concrete pavement, the equation is of the form: 

Nt - K1 [(J}]K• (SO) 

The strain, £, and stress, u, in the above equations are calculated 

using elastic theory. As noted before, Nt, is not a single number for a 

given pavement but is distributed in a probabilistic way. The probability 

density function for N1 on a specific pavement is illustrated in Figure 5. 
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p(x) 

Figure 5. Distribution of Nt 

This is a result of the fact that the values of K1 , K2 , E, and a in the above 

equations are also distributed over a range of values. 

Because Nt is probabilistic, Nt has an expected value and a variance, 

as do K, and K2 , and it has been found that K, and K2 are correlated, so that 

there is a covariance of K1 and K2 • If Nt is normally distributed, the 

expected value of Nt for asphalt pavements is: 

- () -[1]"' Nt = E Nt = K1 f' {51) 

and its variance is {as shown previously assuming the lack-of-fit error {E) 

= 0}: 

Var(Nt) = N! cv 2 (k1) 

+ k~ N! (ln €)2 
cv 2 (k2) 

{52} 
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where 

= the correlation coefficient between K1 and K2 

= the coefficient of variation of K1 
= the coefficient of variation of K2 
= the expected value of K1 
= the expected value of K2 
= the expected value of the calculated strain 
= the expected value of the number of load applications 

The expected value for concrete pavements is: 

and the variance is: 

Var(Nt) = N! cv 2(k1) 

+ "k~ n: (ln u)2 
cv 2 (k2) 

+ "k~ n: cv 2 
< £ > 

+ 2 U-kz Nf {Pk,kJ k1 k2 CV { k1 ) CV ( k2 ) 

30 

{53) 

{54) 

These are the expected values and variances that are to be used with 

the Gumbel and Weibull distributions as well. If the lack-of-fit error is 

not zero, its square is added to the variance term. 

If Nt is lQg normally distributed the expected values and variances are 

computed in a different way, as follows. The natural logarithm is taken of 

both sides of the phenomenological equation for N1• For asphalt pavements: 

1 n Nt = 1 n K1 - K2 1 n £ {55} 

and for concrete pavements: 

1 n Nt = 1 n K1 - K2 1 n a {56} 

The expected value of ,ln Nt for asphalt pavements is: 

E [1 n N1] :: 1 n K1 - K2 1 n £ {57} 
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The expected value of ln N1 for concrete pavement is: 

E [1 n N1] = 1 n K1 - K2 1 n u (58) 

The variance of ln N1 for asphalt pavement is estimated by: 

var [ln N1] = cv 2 (K1} + K~ (ln"EY cv 2 (K2} - 2 lne{K2) PK,~ cv(K1} cv(K2} (59) 

The variance of ln N1 for concrete pavements is given by: 

var [ln N1] = cv 2 (K1} + K~(ln a)2 
cv 2 (K2)- (ln U){K2) Pk,kt cv(K1}(cvK2} (60) 

Reliability may be defined_ in one of two ways as (1) the probability 

that the traffic will not exceed N1 or (2) the probability that the cracking 

area will not exceed the maximum acceptable level. Both of these approaches 

to reliability require that a probability density function for the variable 

of interest {N1 or area cracked) is specified. 

Reliability takes into account the fact that both the expected traffic, 

N, and the number of traffic load applications to reach failure, N., are 
- -probabilistic, each having expected values, Nand N1, and variances, var (N) 

and var {N1), respectively. 

If both N and N1 are normally distributed, a difference distribution 

(D), also normally distributed, may be defined. They are illustrated in 

Figure 6. 

D 

D = E(D) 

Var (D) 

- -
= N1 - N 

= var (N1} + var (N) 

(61) 

(62) 

(63) 
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P(N) 

N 
P(Nf) 

N 

P(D) 

Figure 6. Difference Distribution, Nt - N. 

Reliability may be defined in terms of the difference distribution. 

Reliability, R, is the probability that Ntis greater than N, i.e. 

R = Prob [Nt > N] (64) 

This is the same as saying that reliability, R, is the probability that 

Nt - N is greater than 0. 

R = Prob [ (Nt - N) > 0] (65) 

Referring to the graph of the difference distribution, the distance Dd 

- D is equal to Z~0 , where Dd is the design minimum value of the difference 

distribution (Dd = 0) and ZR is the normal variable corresponding to the 

desired level of reliability. 

Dd - D = ZrPo (66) 

-
Dd = O=D + ZrPo (67) 

- -
[Var (Nt) + Var (N)] * 0 = Nf - N + ZR (68) 
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After some algebra and use of the quadratic formula: 

Nf = N - ZR'N[z: cv 2 (N) cv 2{Nf) -cv 2{Nf) - cv 2 (N) r {1 - z: cv 2 (Nf) r, 
(71) 

The value of ZR is taken from the list of normal variables 

corresponding to the desired level of reliability in Table 4. 

Table 4. Reliability Factor, ZR, Values. 

Reliability Normal Variable 
Level,% ZR 

50.0 -0.000 
70.0 -0.525 
80.0 -0.84 
85.0 -1.04 
90.0 -1.28 
95.0 -1.64 
99.0 -2.33 

_9_9_ g -3 08 
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If both N and Nt are log normally distributed, once more a difference 

distribution may be defined as: 

0 = lnNt-lnN 

E(O} = 0 =: 1 n Nt - 1 n N 

u2 (0} = var(O} =cv 2 (Nt} +cv 2 (N} 

(72) 

(73) 

(74) 

Reliability in this case is defined as the probability that 0 is 

greater than zero, that is: 

R = Prob [ d > 0] 

As before, the design value of Od is zero, which means that: 

0 -0 z = _d __ 

R C1 
D 

-ln N1 + ln N 
CTo 

which gives: 

or 

The normal variable ZR is chosen from the same table as before. 

( 7-s) 

(76) 

(77) 

(78) 

(79) 

Whether Nt and N are distributed normally or log normally, the 

relationship between the expected value of traffic, N, and that of the 

number of load applications to failure, N, depends only upon the normal 

variable, ZR, for the desired level of reliability and the coefficients of 

variation of N and Nt. 

As noted previously, these coefficients of variation can be estimated 

realistically from the Taylor series expansion of the equations used to 
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predict N and N1• The coefficient of variation of N1 depends upon the 

coefficient of variation of K1 and K2 and their correlation coefficient, all 

of which can be, and have been, measured extensively in the laboratory. The 

coefficient of variation of the number of traffic load applications, N, 

depends upon the coefficients of variation of the average daily traffic, the 

traffic growth rate, and the load equivalence factor for the traffic stream, 

all of which can be estimated realistically from existing traffic data 

records. 

Relation of Reliability to the Appearance of Cracking 

Reliability can also be based upon the appearance of cracking and, in 

this case, reliability can be defined in the following equivalent ways: 

R - Prob [cmax > c] 

R - Prob [cmax - C > 0) 

R - 1 - J~ p(x) dx 

R - J_:- p(x) dx 

where 

cmax = the maximum acceptable value of the area of cracking 
p(x) = the probability density function for cracking 

The probability density functions for cracking have been discussed 

previously as being Gumbel, Weibull, or log normal. All of them make use 

of the formulation that the area of cracking is equal to the probability 
N 

that the damage ratio, tf , is greater than 1.0. It is recalled that the 

definition of the cracked
1
area is: 

c - r D-OD p(x) dx (81) 
Jo-1 

where 
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X = D- 0 (normal distribution) 
aD 

x = D (Gumbel and Weibull Distributions) 

The limits of integration of x are: 

D 1' x, 
1 -0 (normal distribution) = = 

aD 
when 

D = 1' x, = 1 (Gumbel and Weibull) 

D = Ul, X = G) 

so that: 

c = Jx. .. p(x) dx 

An estimate of the variance of cracking may be obtained 

definition of cracking, since c is a function of both N and Nt, 

var(c} [ac]' + [~r var(N,J = aN var(N} aNt 
where 

ac ac ax aD ac 1 1 - = -. - • = - • • 
aN ax aD aN ax aD Nt 

ac ac ax aD ac 1 [ "] = - • = ax . aD • - N/ aNt ax aD aNt 

36 

(82) 

(83) 

(84) 

(85) 

from this 

(86) 

(87) 

(88) 



Lytton and Zollinger 

Thus, 

var{c) 

var{c) 

But since: 

Then: 

= [dcl
2 

dX D•U • 

var{c) = [dcl2 
dX D•U 

Because cis defined by the integral: 

c = J p{x) dx 

its derivative is defined by the function being integrated.: 

:: = d~ [J p{x} dx] = p{x) 

[::L = [P{X}] x•O CNormal, log normal) 

x•O !Gumbel end Weibulll 

And the variance of cracking, var {c}, is given by: 

var { c} = [P2 {x} 1-o CNormaJ. log normall 

x•O CGumbel end Weibulll 
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(89) 

(90) 

{91) 

{92} 

{93} 

(94) 

(95) 

{96} 

For the three probability density functions appropriate for cracking, 

the variances of cracking are as follows: 

Gumbel: 

p(i) = /3 tlx-11 ., e -( ~) 
{97} 

i = 0 
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Wei bull: 

log Normal: 

p(i) = -y).{).xr- 1 e -frxT 

i = D 

where, in the this case: 

x = o 
and 

a(ln D) = exp ~ + ~ 2] [exp('f) - 1]" 

and 

38 

(98) 

(99) 

(100) 

(101) 

The use of this estimated variance of cracking is the same as before. 

The re 1 i abi 1 i ty of the pavement is defined as the probabi 1 i ty that the 

actua 1 cracked area wi 11 not exceed the maximum a 11 owabl e crnax, when the 

N 
damage ratio, , equals 1.0. This is illustrated in Figure 7: 

Nt 

Distrlbution of Cracking 

Figure 7. Pavement Reliability with Reference to Pavement Cracking. 
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= r· p(x) dx 
jo • u. 1 

R•R1 

c = Jx• p(x) dx 

cmax - c = ZR • [var(c)t 

- 1 - TI (normal distribution) X = 
O'o 

- D (Gumbel and Weibull distribution) X = 

- ln (D) (log normal distribution) X = 
a (ln D) 
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(102) 

(103) 

(104) 

(105) 

( 106) 

(107) 

The reliability multiplier, ZR, must be taken from the same probability 

density function which is used in the definition of cracking. In the case 

of the log normal distribution of traffic, N, and load applications to 

failure, N1, the cracking area itself is normally distributed and the ZR 

values are taken from the normal variable tables given previously. The 

pavement must be designed so that the expected traffic (N} will cause the 
amount of damage c, given by the equation below: 

cmax = c +ZR • [var{c)]* (108) 

Put in another way, the amount of cracking to be expected after the 

application of N loads should be no more than 

c = cmax - ZR [ v a r {c) t (109) 

Relation of Reliability to Construction Specifications 

The relation of reliability to construction specifications can be 

illustrated using a simplified form of the number of load cycles to failure, 
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N1• It is recalled that cracking damage, D, is defined as a ratio of 

traffic, N, to the load applications to reach failure, N1, and an appropriate 

probability density function (e.g., log normal, Gumbel, or Weibull). The 

traffic, N, is predicted as: 

N(T) - l ~T +r !] (110) 

where 

av = the initial number of vehicles per day 
T = the elapsed time, in days 
r = the rate of increase of traffic per day 
l = the load equivalent factor for the traffic stream. 

Each of the variables, av, r, and l have expected values and variances. 

Thus, for any given time, t, the traffic, N, will have an expected value and 

variance. 

The number of 1 oad eye 1 es to fa i1 ure is a 1 so a function of sever a 1 

variables as simplified below for the purposes of this illustration: 

&I (Ill) 

where 

d = the thickness of the surface layer 
at = the tensile strength of the surface layer 
E = the modulus of the surface layer 
n = the fracture exponent of the surface layer 
E = the strain at the bottom of the surface layer 
s = speed of travel 
c = a constant of proportionality 

The variables d, at, E, and n are controlled by the quality of 

construction and their expected values and coefficients of variation in the 

field dictate the expected value and variance of N1• 

The re 1 i abi 1 i ty of a pavement depends upon the expected va 1 ue and 
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variance of-the damage ratio, D, which is given 

by: 

o = E(D) = E [:.] - [:,] [1 + CV 
2(N,)] ( 112) 

(]2 = var (D) D = var [ :.] = [:. r [cv 
2
(N) + cv 

2(N,)] ( 113) 

From this result, it is seen that the expected values and variances of 

N and N1 uniquely establish both the expected value and variance of the 

damage and consequently, the 1 evel of reliability of the pavement. To 

determine how construction specifications affect reliability, it is 

necessary to go a step farther to find how both the N and N1 expected values 

and variances depend upon the values previously noted: 

For the traffic, N 
av 
r 
l 

For the load applications to failure, N1 
d 
(Jt 

E 
n 
f 

The expected value of the traffic (E(N)) is: 

jj = E[N) "' 1 E· T + r ~1 + T cov(a •• t) + r; cov (t,r) {114) 
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The variance of the traffic (Var (N}} is: 

a'(N) - Yar(N) = f. T + f' ;
2

]' yar(l) + (1T)
2 

Yar(a.) 

[
1T

2

]

2 

+ 
2 

var(r} 

+ 2 f. T + f' !2

](1r) coY(a..t) 
(115} 

+ 2 f• T + f' ; 
2

] ~ ; 2

] coy (I, r) 

+ 2 (1T) ~ !2

] COY (a.,r) 

The covariance terms are included because there is a possible 

correlation between initial traffic rate, av; rate of increase, r; and load 

equivalence factor per vehicle, l. The covariance terms may also be written 
as 

cov (av,l) - P,,[var (aJ var {l}r~ 

cov (l,r) - P,r [var(l} var(r}t 

cov (r,av) - Pra. [var(r} var(av>f 

and the coefficients Pa,l, P,r,and Pra. are the correlation coefficients for 

the noted pairs of variables. The expected value of the traffic to reach 

failure is: 

- c d ut s + other terms involving coefficients of --2-~J 
(a r)%£ 

variation of each of the variables. (119} 

The expanded form of this expression is: 
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E(H,) = N, [1 - a:n ~- :]cv
2 

(d) 

+ ..!.cv 2(u)- n cv 2 (E) 
2 t 4 

+ ~ cv 2 (s) + n
2 ~n l!_lr cv 2 (n) 

2 2 l ~Jf 
- n Pa,E cv(E) cv {ut)] 

- cv
2

(N1) = ~ - :r cv
2
(d) + ! cv

2
(u,) 

-2 

+ ..!!. cv 2 {E) + cv 2 ( s) 
4 

+ n2 {lJ I 1r cv 2 (n) 

~Jf 
-

- ; Pae • cv(ut)cv (E) 

The term N
1 

is an approximation of E{N1) and is equal to 

43 

{120) 

{121) 

(122) 

In the formulation given above, the strain {E) has been assumed to be 

deterministic and only the variables ut and E have been assumed to be 

corre 1 a ted. The corre 1 at ion coefficient between the two is P aE • The 
I 

values d, E, ut, s, and n are the expected values of those individual 

variables. 
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As can be seen in this formulation, the only values of these variables 

that are used in determining the reliability of a pavement are the exoected 

values and variances. Construction specifications are written explicitly 

to control the layer thickness, d, and various material properties are 

controlled directly by imposing specification limits on tensile strength 

(concrete pavement) or indirectly by setting specification limits on 

compacted density and asphalt content (asphalt pavement). 

If one of these material properties is used in specifications to 

control quality, it is readily apparent from the foregoing that it cannot 

be considered to control the reliability of the pavement design. 

Furthermore, it is readily observed that: 

1. In the coefficient of variation of traffic (cv (N)) the load 
equivalence factor (l) per vehicle appears in all of the terms. 

2. In the coefficient of variation of the number of load applications 
to failure (cv (Nt)), the fatigue exponent, n, appears in almost 
all of the terms. 

3. The coefficients of variation of N and Nt can be expressed as 
weighted sums of the coefficients of variation of several other 
variables upon which they depend explicitly. All of these cv 
values can normally be assumed accurately enough for the purposes 
of design reliability by a person with sound experience. 

4. Controlling the construction quality by monitoring test values of 
a single variable does not, in itself, control the design 
reliability of the pavement. 

The relation between the minimum tensile strength of a paving surface 

material (sm) and the values needed for design reliability, ut and cv (at), 

is one which requires the designer to assume a coefficient of variation and 

the probability density function of the variable selected for control. What 

is specified is a minimum strength (sm) and a percentage of the tests that 

may fail to achieve that strength (p). 
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If the .tests are assumed to follow a normal distribution pattern, the 

normal variate, Zc, for the construction quality control test may be found 

from the minimum percentage, p, by: 

p = erf(Zc) (123) 

or 

p = f-~ e -~ dx (124) 

This is illustrated in Figure 8 with: 

s -- Cl t 

Z C - o(t) 

x - o X 

Figure 8. Construction Quality Control Distribution. 

-
X = s - (Jt {125) 

a(t) 
where 

s = -
(Jt = 

strength 
mean strength 

a(t) = the standard deviation of strength. 

Once the value of the normal variate, Zc, is known, the mean value of 

the tensile strength, ut, may be found only if the coefficient of variation 

of the strength is also assumed to be known. The mean strength is: 

{126) 

Setting a ratio of the minimum strength to the mean strength along with 

setting a minimum percent of tests failing, p, is the same as setting a 
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maximum allowable coefficient of variation. As before, p determines Zc and 

the strength ratio (smlat), together with Zc, specifies the coefficient of 

variation: 

(127) 

The same reasoning applies to construction specifications controlling the 

thickness and percent allowable variation of pavement layer thicknesses. 

The logic is inescapable: setting specifications is either arbitrary 

(and therefore irrational) or it is based upon knowledge and experience. If 

this latter is the case, then regardless of the specification method that 

is used, 

1. setting a minimum and a maximum percent to fall below it, or 

2. setting a ratio of the minimum to the mean and a maximum percentage 
to fall below it, 

the knowledge and experience upon which it is based is upon a known 

coefficient of variation and a known, achievable, mean value of the 

specified variable. Stated in another way: to imply that specifications 

can be set without an explicit or at least intuitive knowledge based upon 

experience of the mean and coefficient of variation of the specified 

variable, is absurd. 

There are other important lessons to be learned from the expressions 

given above for the expected value and coefficient of variation of N1 and the 

number of load applications to reach failure. Both of the expressions for 

E(N1) and cv (N1) include the effect of the covariance of the modulus and the 

tensile strength, variables which are known to be positively correlated in 

both asphalt and concrete. The lessons are as follows: 
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1. the carrel at ion coefficient between the two is positive, i.e., 

pilE = (+). 
t 

2. both E(Nt) and cv (Nt) are related to the covariance (an inherently 
positive quantity) of E and ut by 

a. a negative sign 
b. the fatigue exponent, n, as a weighing multiplier. 

This means that the covariance of these two variables (or any two 

positively correlated variables) reduces both E(Nt) 

and cv (Nt), and the size of the fatigue exponent governs how much that 

reduction is. It is a strange, but true, fact that because the tensile 

strength and modulus of a material are positively correlated, the expected 

traffic that can be carried by a pavement is reduced. If a material is used 

in which stiffness and strength are negatively correlated, then it will 

increase the expected life of a pavement. Stress-strain curves for the two 

types of material are illustrated below. 

Stress, Stress, 
a a 

Strain, c 

Figure 9. Correlation Between Material Strength and Stiffness. 

Thus, the covariance of material properties has a direct effect upon 

the life and reliability of the pavement, with a positive correlation having 

as decremental effect and negative correlation having an incremental effect. 
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Specification limits should not be set without recognizing this important 

effect. This can be done by setting upper limits on the positive 

correlation coefficient and no lower limits on negative correlation 

coefficients. 

APPEARANCE OF DISTRESS ON REHABILITATED PAVEMENT - RELIABILITY OF OVERLAYS 

When a pavement is overlayed, there are some areas in the old pavement 

surface that are weaker than others. The percent of the total area of the 

old pavement that is thus weakened is cr {Figure 10), the percent area of 

cracking at the time of rehabilitation. The damage to the overlay above 

these portions of the pavement wi 11 occur more rapidly than e 1 sewhere, 

meaning that the number of load cycles to reach failure will be smaller here 

than elsewhere. 

Figure 10. Variation in Pavement Condition at the Time of Overlay. 

At any given point along the pavement length, the crack depth will have 

reached to some proportion of the old surface layer thickness. If the crack 

depth is de and the depth of the o 1 d pavement surface 1 ayer is d1 , the 

relation between the two is: 

de = d1 p(x} {128} 

In these areas, cracks must grow through a distance of: 
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- d0 + [1 - p (x)] d1 
(129) 

where 

d0 = the thickness of the overlay 

In the cracked areas, the cracks must grow upward through the overlay 

thickness alone. Making use of some of the principles of fracture 

mechanics, it is known that the number of load cycles to reach failure in 

the cracked areas N~, is proportional to: 

where 

uta = 
s = 
Eo = 
n = 

1 - n 

do ~ u~ s 
n 

Eo., 

the tensile strength of the overlay 
the speed of travel 
the elastic modulus of the overlay material 
the fracture exponent of the overlay material 

(130) 

In the areas where the cracks had not penetrated through the old 

surface layer, the number of load applications to reach failure, N1u, is 

proportional 

Ntu cr 

where 

E, = 

to: 

[do + d,) 
1 

- ~ - n . u~} 1 - n u~s] h- p(x) 1
- ;] 

d, 
.., 

d, ~ 

n n 

Eo., E? 

the elastic modulus of the old surface layer 
the tensile strength of the old surface layer 
the fracture exponent of the old surface material 

(131) 

Typical values of the fracture exponents are: asphalt concrete_2-4; portland 

cement concrete, 12-16. 
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The rat·io of the two numbers of load cycles to reach failure is: 

1 

(132} 

The above expression assumes that the fracture exponent {n} is the same in 

the overlay and in the old surface layer. If, in addition to this, it is 

also assumed that: 

p(x} 
2 

(133a) 

(133b) 

(133c) 

where the average value of p(x} is p{x} and cr is the area of cracking at the 

time of rehabilitation. Under these assumptions, the ratio of the number 

of load cycles to failure is: 

[ 
d ]1 

-.; [ld I - C ]
1 

-.; = fu 
1+-1 __ 1. r 

d0 d0 2 

{134} 

This expression leads to the definition of damage in the "uncracked" area 

(1 - cr} and in the "cracked" area (= cr>• 

Damage in the "cracked" zone: 

N 
D =-

c Nfc 
{135} 
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Damage in the 11 uncracl<ed" zone: 

N (136) = 

(137) 

(138) 

The total amount of cracking that occurs in the surface of the overlay 
is: 

c = Jx.~ P(Xc} dxc + J~ p{xu) dxu (139) 

I - o (140) xc, = c {normal distribution) 
aD. 

1 - o 1 -De fu X = u = {normal) (141) u, 
aD. fuaDc 

-ln D (142) Xc, = c {Log normal distribution) 
a(l n De) 

-ln D -ln(fu oc) 
xu, = u = {Log normal) (143) 

a(l n Du) a[l n {fuDc)] 

xc, = 1 {Gumbel and Weibull} (144) 

xu, = fu Xc, = fu {Gumbel and Weibull) (145) 

The values of Xc and xu have similar definitions: 
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Normal-Distribution: 

Log 

X = c 

Normal 

XC = 

= Dcfu - DJu 
fu Uoc 

Distribution: 

ln De - ln De 

u(l n De) 

xu 
ln Du - ln Du 

= = 
ln {fuDc} - ln {fuDc) 

U (1 n Du) u[ln {fuDc)] 

xu = 
ln De - ln De 

u(l n De) 

xu = XC 

Gumbel and Weibull Distributions: 

XC = DC 

xu = Du = fuDc 

xu = fuxc 
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(146) 

(147) 

(148) 

(149) 

(150) 

(151) 

(152) 

(153) 

(154) 

(155) 

The variances of damage for the "cracked" and "uncracked" areas are as 

follows: 

(156) 

(157) 

The variances of cracking for the "cracked" and "uncracked" areas are 

as follows: 
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var(c) = [dcl
2 

[dcl
2 

dx o • u. + dx o • u •• t. o. 

var(c) 

where 
- fuXc xu = 

and 
- - 0 (normal and Log normal) XC = xu = 

-
DC (Gumbel and Weibull) XC = 

- fuQc (Gumbel and Weibull) xu = 
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(158) 

(159) 

(160) 

(161) 

(162) 

(163) 

Reliability is introduced into the design of an overlay by designing 

it to carry the design traffic when it reaches a design level of cracking, 

cd, given by: 

(164) 

and the reliability factor, ZR, is calculated using the appropriate 

probability density function. 

SUMMARY AND CONCLUSIONS 

The correct application of reliability to pavement design is essential 

to the objectives of pavement design which are to produce quality pavements 

to serve the traveling public in comfort and safety, being built to be 

durable in service at a minimum life cycle cost. Reliability is a technical 

term being defined in mathematical terms and is therefore objective in its 

application. As applied to pavements, it makes use of either empirical or 

mechanistic pavement performance equations to predict an expected value and 
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variance of·either the traffic or the distress for which the pavement must 

be designed. Explicit expressions are found for the quantities in terms of 

the expected values and coefficients of variation (cv's) of the ·independent 

variables which appear in the performance equation(s). Although ample data 

are available to determine these for all pavement independent variables, 

experienced engineers can estimate realistic values of the cv's almost as 

well as they can be measured. 

Several examples of the application of reliability to pavement 

performance models are given in this paper including: 

1. Proper methods of analyzing field data to develop an empirical 

equation for the number of load cycles to reach pavement failure 

due cracking. 

2. Pavement performance equations for cracking which incorporate 

reliability in determining the number of load cycles for which the 

pavement should be designed. 

3. Relations of reliability to construction specifications. 

4. Methods of incorporating reliability into the design of overlays 

while taking into account the variability of the cracking that 

occurred in the old pavement. 

In all cases, the mathematical nature of reliability was demonstrated. 

It is because of its ability to be defined in precise, unambiguous terms 

that makes it simple to apply and possible to set objective standards for 

the performance of pavements while taking into account the variability of 

the factors which control the performance. Reliability must be applied 

correctly in de.signing pavements in order to achieve its objective of 

providing an acceptable level of risk that pavements will carry the 

traveling public in comfort and safety while being built durably at minimum 

life cycle costs. 
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APPENDIX I 

STATISTICAL VARIABLES AND FUNCTIONS 

Since in depth discussions of reliability involve use of some 

statistical terminology, it is incumbent to provide definitions of commonly 

referred to reliability terms. 

A list of terminology is provided as: 

1. vari ab 1 es 
2. frequency distribution 
3. populations and samples 
4. probability density function 
5. expected value 
6. variance 
7. standard deviation 
8. coefficient of variation 
9. covariance 

10. cumulative probability function 

Variables. The term variable has become practically all-inclusive in 

statistics. It refers to something being observed that exhibits variation. 

The variation may be in part due to errors of measure, the natural 

characteristics of certain material properties, or planned variation that 

is imposed externally. Some variables are controlled as part of a planned 

experiment. Other variables which result from experimentation vary from 

repeated trials of the same combinations of initial conditions. In other 

words, yield variables display a certain randomness in their behavior. 

Dividing the variables associated with any system into those which can be 

controlled and act upon the system {i.e. independent variables) is the basis 

of understanding of the application of statistics in design reliability. 

Frequency distribution. The distribution of a random variable refers 

to a profile of the variable that contains all the relevant information 

about the statistical properties of that random variable [7]. In many 
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instances, it is unnecessary to use all the information contained in the 

distribution, but rather a few properties of the distribution may be 

sufficient. Two of the most frequently useful pieces of information are the 

location of the distribution and its dispersion. 

Pooulations and samples. Statistically speaking, it is important to 

distinguish between populations and samples. The population {sometimes 

called the universe) comprises all of the possible observations that exist. 

A samp 1 e is a co 11 ect ion of observations actua 11 y taken. Completely 

enumerated, the sample and the population become one in the same. Normally, 

the sample is a subset of the total population. Statistical variables apply 

to both samples and the population. However, statistical variables of a 

sample only permit inference of certain information about the population. 

Without comp 1 ete enumeration, samp 1 e statistics cannot be app 1 i ed with 

certainty to the population statistics. 

The variables that are used in determining reliability which are 

defined mathematically are delineated and follow below: 

Probability Density Function CPDFl. A probability density function is 

any function which has, beneath the curve, a total area equal to 1.0. It 

does not have to be symmetric, or to have one peak, or to have any of the 

characteristics of the commonly recognized normal distribution curve. 

Mathematically, the probability density function, f{x), is 
upper limit 

1 = flower limit f {X} dx 

The lower limit may be -m or 0, or any other. The upper limit may be 0 or 

+m or any other known upper limit. 

Quantitative descriptors of a random variable related to the 

performance of a pavement system may represent a range of events of value 
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of the performance variable. Since the value of the performance variable 

is a random event, it can assume a numerical value only with an associated 

probability [5]. The description or measure of the probability associated 

with all the values of a random variable is the probability distribution. 

The form of the distribution function, equivalently referred to as 

probability density function (PDF}, describes completely the probabilistic 

characteristics of a random variable. These functions are discussed later 

in greater detail but approximate descriptors of a random variable are 

frequently employed in the form of main descriptors. Main descriptors refer 

to the central value of the random variable and a measure of the dispersion 

associated with the random variable values. 

In mechanistic design approaches, the assumed distribution function may 

be verified based on data collected from field studies of pavement 

performance. However, if the type of data is not available, then it may be 

appropriate to assume a distribution function (i.e. normal distribution) 

until such data is available for verification purposes. From a practical 

perspective, a defined distribution in addition to the principal quantities 

wi 11 pro vi de the information to eva 1 uate the properties of the random 

variable. 

Expected Value. The central value of a random variable can be referred 

to as the mean or expected va 1 ue. This type of measure (such as the 

average) is of natural interest since there is a range of possible values 

associated with a random variable. Therefore, as this range of values are 

distributed and the different values of the range variables within the 

distribution are associated with different probabilities. With the noted 

distribution, a weighted average can be determined referred to as the mean 



Lytton and Zollinger 60 

value or the expected value of this random variable [5]. Another symbol 

commonly used for the expected value is p, which stands for the mean. 

If a random variable (x) is continuous over its range (R) of values, 

then mean value may be found from the PDF (fx(x)) as: 

(1) 

A 1 so app 1 i cab 1 e to mechanistic design concepts is a genera 1 i zat ion of 

equation for a function of x. Given a function g(x), its weighted average 

or mathematical expectation is found as: 

(2) 

Other statistics related to the mean are the median and the mode. The 

median is a type of statistical average in which 50 percent of the observed 

values are greater and 50 percent are smaller. The median is usually more 

appropriate to use than the mean with highly skewed distributions. The mode 

is the value in a distribution that occurs with the greatest frequency. The 

mean, median, and mode are illustrated in Figure 1. Another useful 

statistical term is the range. It is defined as the difference between the 

layout and the smallest observations in a sample distribution. 

Variance. A measure of the dispersion of a random is noted as the 

variance. The standard deviation (u), which is the square root of the 

variance, can also serve to indicate the degree of dispersion for a given 

distribution. The variable distribution relates the level or variability 

which is the quantity that indicates how closely the values of the random 

variable occur around the weighted average or mean. The variability is 

dependent upon the derivations from the centra 1 va 1 ue. The dependency 

should not be a function of whether a deviation is above or below the 

central value. 
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Mean 
Median 
Mode 

Mode Median Mea 

b. Skewed Distribution 
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Figure 1. Frequency Distribution Illustrating the Relationship Between the 
Mean, the Median, and the Mode. 

The first moment about the expected value is always zero, no matter what the 

probability density function. 

E[(x -J£)] = J_: (x -J£) fx(x) dx 

= 0 

If the deviations about the central value are found, a measure of dispersion 

is obtained which is the variance (Var(x)): 

Var(X) = JR(x -J£j2 fx(x) dx 

= JR{x 2 -21'xX+J£!)fx(x)dx 

= E(X 2) +2J'x E (x) + ~£! 

= E(X 2) - ~£! 

(3) 



Lytton and Zollinger 62 

The var.iance can also be found from the second moment about the mean 

which is the expected value of (x-p) 2
• The term E(x2

) = JRx2 fx(x)dx is 

known as the mean-square value of x [5]. The standard deviation (u), 

previously noted as the square root of the variance can be determined as: 

O'x = Jvar(X) (4) 

A measure of whether the dispersion is large or small, (as given by the 

variance or the standard deviation) the coefficient of variation (cv) is 

used: 

0' 
cv = 2 

P.x 

which is a measure of dispersion relative to the central value. 

(5) 

Covariance. If two variables, x andy, are multiplied together to form 

the product, xy, the expected value of the product is 

where 

p 

u(x) 

u(y) 

E[(x,y)] = J_: J_: xy fx.v(x,y)dxdy 

= E(x) E(y) + pu(x} u(x) u(y) 

= the joint probability density function of x andy 

= correlation coefficient between x and y 

= the standard deviation of x 

= the standard deviation of y 

(6) 

The last term in the expected value of the product of x andy is called 

the covariance of x and y. 

cov (x, y) = pu(x) u(y) 

It is equal to zero only if the correlation coefficient, p, is zero. In 
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general the· expected value of a function of x andy, g(x,y}, is given by 

E[g(x,y}] - J_:J_: g(x,y} fx)x,y} dxdy (7} 

The coefficient of variation of a single variable cv(x} should not be 

confused with the covariance of two variables which is written as cov (x,y}. 

Functions Used in Reliability 

Many functions which are used in the determination of reliability 

cannot be integrated in closed form. Instead, use is made of a Taylor's 

series approximation (assuming a normal distribution}. 

E (g(x}] - J_: fx(x} g(x} dx 

Because g(x} may be represented as a Taylor Series in the form: 

g(x} - g{m) + g' {J.') (X-J.'} + g" {J.'} {X-J.£} 2 + • • • {8} 
2! 

The expected value of the function may be expressed in a similar form: 

E[g{x)] - J_: g{p} fx{x} dx + J_: g' {p}(x -p} fx(x} dx 

+Joo g" {J.'} {x-p} 2 f {x)dX+ ••• 
-oo 2 X 

E[g{x}] - g{p) + g" {p} Var{x} + • • • 
2 

{9} 

The variance of a function is approached in the same way, beginning 

with the relation: 

{10} 

and arriving at the approximation using the Taylor series expansion of: 

Var[g{x}] - (g' {p)]
2

Var{x} 

+ ..![g" {J.'}t Var 2 {x}[P2 - 1] 
4 

3 

+ P, g' {m} g" (p) Var "2 {x) + • • • 

{11} 
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where 

81 = a measure of the skewness of fx(x) 

82 = a measure of the kurtosis of fx(x) 

when fx(x) is symmetrical, 81 = 0; when it is normal, 82 = 3. 

64 

The expected value of a function of two variables is arrived at using 

a two-dimensional Taylor series to give: 

E[g{x,y)] = g(l'x,l'y) + ! 9xx{l'x'l'y) Var(x) 

+ gxy (l'x'l'v) cov (x,y) + • • • 

The variance of a function of two variables is given by: 

Var[g{x,y)] = [gx (l'x'l'v)] 2 Var(x) 

(12) 

+ [gv (l'x'l'v)]2 Var(y) (13) 

+ 2 gx (l'x'l'y)9y {l'x,l'y) COV (x,y) + • • • 

In the equations given above, 

9xx 

gx 

9xy 

= 

= 

= 

= 

= 

ag 
ax 

ag 
ay 

l'x = the expected value of x 

l'v = the expected value of y 
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APPENDIX II 

PARAMETER DISTRIBUTION AND ESTIMATION 

Distribution of Variables 

The numerical distribution of a random variable is circumscribed within 

the probability measure of the associated variable event or value. The 

distribution is defined by the probability density function (PDF) and can 

provide the basis for the probability measure corresponding to all values 

of a random variable. The probability measure of a random variable can also 

be described in terms of a probability distribution. A probability 

distribution is presented in the form of its cumulative distribution 

function (COF) [5]: 

Fx(x) = P(X ~ x) for all x 

where 

Fx = cumulative distribution function 
X = random variable 
x = value of random variable 

Any CDF describing the probability of a random variable must satisfy the 

axioms of probability [6], and be non-ne.gative such that the summed 

probabilities corresponding to the possible values of the random variable 

must equal 1.0. It follows that if Fx(x) is a cumulative distribution 

function, then it must have the following properties: 

(1) Fx(-~) = 0; Fx(~) = 1.0 

(2) Fx(x) ~ 0; and is non-decreasing with x 

(3) Fx(x) is continuous with x 

Probability distributions result due to a physical process (i.e. damage 

in a pavement system due to repeated loads) which encompass specific 

assumptions and can be affected by 1 imiting factors (i.e. design and 
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construction specifications). Probability distributions are typically well­

known and developed with widely available statistical information and data 

tables. The following discussion will present different probability 

distribution functions for use in pavement design. 

The normal distribution. This distribution may be the best known and 

most widely used distribution in reliability analysis. This distribution, 

known as a Gaussian distribution (N(~,u)) has a probability density function 

as: 

for ~<x<110 

where 

~ = mean of the distribution 
u = standard deviation of the distribution 

A gaussian distribution with a mean (~) of 0.0 and a standard deviation of 

1.0 is known as the standard normal distribution (N (0,1)) with PDF: 

fs (s) = ......!__ e -11/21s2 

rz;-
for -110< s < 110 

is illustrated in the figure below: 

f s(S) 

Probability (p) 

l N(O,l.) 

Figure 2. The Standard Normal Density Function [6]. 
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The density·function of N(0,1) is symmetric about zero in which positive 

values of probability are normally tabulated in available tables. By the 

virtue of symmetry about zero, the probabilities associated with the 

negative values of the normal standard variate (S) are found from 1 minus 

the tabulated values: 

F s ( -s ) - 1 - F s ( s ) 

The probabilities (p) of other normal distributions N (p,u) can be found for 

a normal variate (X): 

p (a<X<b) - 1 Jb exp ~ _!_ ~x-pl2ldx 
u{iK a [ 2 u J 

which is the area under a normal curve between the interval from a to b as 

illustrated below [5]: 

fx (x) 
N (J.L,O') 

/ 

X 

Figure 3. Probability Density Function for N(p,u) [6]. 

The log-normal distribution. A random variable X has a log-normal 

probability distribution of the natural logarithm (ln) of X is normally 

distributed. The probability density function of X is: 

f ( ) 1 { 1 [lnx->.]
2
} x x - exp --

~rx 2 r 
for 0 s x <II) 
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where 

>. = E(ln (X)) 

r = Jvar (ln X) 

68 

The parameter x is the mean of the di stri but ion of ln X and r is the 

standard deviation. A log-normal distribution is shown below [5]: 

c •0.1 

Median • LO 

Figure 4. log-normal density functions. [6] 

A log-normal distribution is related to a normal distribution through 

a logarithmic transformation. The probabilities associated with a log­

normal variate (X) can be determined using the table of standard normal 

probabilities. Therefore, the probability of X between the interval a to 

b is: 

P (a<X~b) = f b 1 exp r ..!_ [ln X - ).]21 dx 
II {'i; rx [ 2 r J 
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Since the log-normal distribution of the random variable X displays 

values which are always positive, this distribution may be useful in 

applications where the value of the variate is greater than zero. One such 

application is in the characterization of the distribution of fatigue damage 

of highway materials [5]. 

The Weibull distribution. The Weibull distribution typifies the 

distribution of non-negative random variables occurring in applications 

regarding 1 ife times, waiting times, etc. Other non-negative random 

distributions include material strengths, particle dimensions, rainfall 

amounts, radioactive intensities, etc. Exponential or gamma distributions 

may be used to fit the frequency distribution of this type of random 

variable; however, the Weibull distribution was introduced to improve the 

fit of some of these distributions [5, 7]. 

Experience has indicated that the Weibull distribution can model the 

probability associated with length of life and endurance data. Fatigue of 

material components may be related to the "weakest link" interpretation of 

endurance. If a pavement system is put under stress when the bond between 

the individual aggregates and the binder may each have its own probabilistic 

endurance level. As the bond begins to break down under fatigue, the 

failure process is initiated and the life of the pavement system is related 

to the minimum fatigue 1 ife of any of the bonded aggregates. If the 

endurance level of any materials exhibit this characteristic, then the 

Weibull distribution may provide a good approximation of·the endurance level 

distribution. 

The probability density function of a random variable X with a Weibull 

distribution is of the form: 
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2r-----------------------------~ 

2 

II= 0.0 
ll = .:!.0 

3 

70 

Figure 5. Graphs of the Weibull density functions for v = 0.0, B = 2.0, 
a= 0.5, 1.0, 2.0. [11]. 

sr-----------------------------------~ 

a =0.5 
v= 0.0 
ll= 10.0 

Figure 6. Graphs of the Weibull density functions for v = 0.0, B = 10.0, 
a= 0.5, 1.0, 2.0 [7]. 
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fx {x) 
p [X -Jil/1- 1 r [X -Jil/11 = a a exp [ a J , if X~ Jl 

0, if X<JI 

Three constants {a, B, and v) are noted as parameters of this distribution. 

The parameter v represents the sma 11 est poss i b 1 e va 1 ue of the random 

variable X. The parameter B relates to the shape of the density function 

while 1/a affects the width of the distribution. The different affects of 

these parameters are shown below. 

The Gumbel distribution. This distribution relates to the extremal 

conditions of a phys i ca 1 process and consequent 1 y is referred to as an 

extreme-value distribution. This type of distribution is a part of an 

important class of probability distributions involving the extreme values 

of random variables such as the largest or the smallest values of a random 

variable. Statistically speaking, these maximum and minimum values 

represent populations of their own and may be modeled as random variables 

with probability distributions. Extreme values from observed data are 

important to many civil engineering applications. One example is in the 

case of structural safety where high 1 oad and 1 ow structural resistances are 

important with regard to the reliability of a structure. When considering 

extreme conditions, the maxima or minima observations are the only pertinent 

data. 

The largest and smallest values from samples of size n not only have 

probability distributions in and of themselves but these distributions can 

be expected to be related to the distribution of the initial variate or 

population. Stated in different words, the largest and smallest values from 

samples of size n taken from a population X are considered to be random 
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variables whose probability distribution is derived from the distribution 

of the initial variate X. 

To elaborate further, a set of observations (x1 , x2 , ••• x"} is a 

realization of the sample random variables (X1 , X2 , • • • X"}. In terms of 

extreme values from a sample size n, the maximum and minimum of (X1 , X2 , ••• 

X"} are the random variables: 

Y" = max (X1 , X2 , ···X"} 

and 

If Y" is less than a value y, then all other sample random variables 

must be less than y. If X1 , X2 , • •• X" are assumed to be statistically 

independent and identically distributed as the initial variate X, then: 

Fx,{x} = Fx..(x} = o o o = FxJx) = Fx(X} 

in which 

= (Fx{Y}]" 

The probability density function for Y" is: 

f = 8Fv.{Y} 
v. ay 

= n [Fx{Y}]"- 1fx{Y} 

For a given y the probability [Fx{Y} ]" decreases with n such that the 

functions Fv.{Y} and fvJY) will shift {as illustrated in Figure 7 for 

an exponential initial distribution fx{x} = e·x [8]} with increasing values 

of n. 
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The distribution function for Y1 can be found in similar fashion. Y1 

is the smallest value in a sample of size n {X, X2 , • • • X"} and if Y1 is 

larger than y, then all other values in the same sample must be larger than 

y. Instead of a distribution function, a survival function is defined [8]: 

1 - F v {y} = p { Y 1 > y} , 

= [1 - fx{Y}]" 

The distribution function for Y1 is: 

fv,{Y} = 1 - (1 - fx{Y}]" 

and the corresponding density function is: 

f v, {y} = n [1 - F x {y} ]" -1 f x {y} 

The function shifts to the left with increasing n for the same y. 

The asymptotic distributions of the extremes have been observed to 

converge on certain 1 imiting forms for 1 arge n. These forms have been 

classified by Gumbel [9] with respect to a double exponential form and to 

two different single exponential forms as Type I, Type II, and Type III, 

respectively: 

Type I: The doub 1 e exponent i a 1 form, exp [ -e·Ainlv] 
Type II: The exponential form, exp[-A{n}/yk] 
Type III: The exponential form with upper bound~' exp[-A{n}{~-y}k] 
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Figure 7. PDF and CDF of the largest value from an exponential initial 
variate. [14] 

This forms also apply to the smallest values [8]. 
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The tail behavior of the initial distribution (in the direction of the 

extreme) controls to a large extent the convergence of the extreme values 

of a random variable with respect to a particular limiting form. 

Specifically, the extreme value from an initial distribution with an 
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exponentially decaying tail in the direction of the extreme will converge 

to the Type I limiting form. The extreme value of an initial variate that 

decays with a polynomial tail will converge to the Type II asymptotic form. 

The Type III asymptotic form is characteristic of a distribution where the 

extreme value is limited. In other words, the largest value has a finite 

upper bound or the smallest value has a finite lower bound. 

The Tyne I Asymptotic Form. The cumulative distribution function (CDF) 

of the Type I asymptotic form for the distribution of the largest value is: 

F (x) = exp[ -e -cmlx-U.I] x. 

where un and an are location and scale parameters, respectively. 

Un = The characteristic largest value of the initial variate X. 
an = An inverse measure of the dispersion of Xn. 

The corresponding probability density function (PDF) is: 

f (X) = a e -an(x-U.Iexp[ -e -an(x-UJ] 
X. n 

Similar functions (CDF and PDF) are defined for the smallest value from an 

initial variate X [8]. 

The Type II Asymptotic Form. For the largest value from an initial 

distribution with a polynomial tail in the direction of the extreme) the 

asymptotic CDF is~ 

Fx_(x) exp~[;]j (14) 
= 

and the PDF is: 

fx_{X) k [:r exp~[: ]J = 
vn 
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where 

v" = The characteristic largest value of the initial variate X 
k = The shape parameter (1/k is a measure of dispersion). 

v" is also equal to the most probable value of X" and similar expressions are 

defined for the smallest value. 

The Type III Asymptotic Form. The Type III asymptotic form represents 

the limiting distributions that have a finite upper or lower bound. 

Therefore, Fx(~) = 1.0 in the case of the largest value and Fx(f) = 0 in the 

case of the smallest value where ~ is the upperbound value and f is the 

lower bound value. For the largest value, the CDF is: 

and the PDF is: 

fx. (x) = k 
w- w 
- n 

where w" is the characteristic 1 argest va 1 ue of X and k is the shape 

parameter(~ is the upper bound). The parameter w" is equal to the modal or 

most probable value of X". The Type III asymptotic distribution of the 

smallest value (f) is similar to the Weibull distribution developed in 

connection with the fatigue behavior of materials. 

Variable Mean and Variances 

The normal distribution. The mean associated with a normal 

distribution is the expected or central value of the random variable as 

previously described in Chapter 3: 
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p,x = E(X) 

= 1 J ... x exp 
u.,fiK _.., 

and the variance is found as: 

Va r ( x) = E (X 2 ) - P.x 

= 1 f .. x2 exp 
u.,fiK -ao 

The log-normal distribution. The parameters associated with a log­

normal distribution are A and r. These parameters are related to the mean, 

p,, and the variance, u2
, of the variate. The mean for this distribution is: 

p,1 = E (X) = E( e v) ; Y = 1 n X 

= _1 J'"' ev exp~.!. [-y-A]2l dy 
.fiK r -- t 2 r J 

S i nee the qua 1 i ty within the brackets is the tot a 1 unit area under the 

Gaussian density function N(A + r2
, r), then: 

P. = exp (A + % r2
) 

The variance of X is a function E(X2
): 
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E(X2) = d.rr J_:0 2
' exp t! [Y; >.]J dy 

= [d.r, J: exp {-! [y - (>.r + 
2'

2

) r dy}] exp{2 (>. + r2J] 

= exp [1 (). + r2
)] 

As shown previously: 

Var (X) = exp[2(>. + r2
)] - exp[2(>. +% r2

)] 

= P.x(e !2 - I) 
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It can be shown that the median of a log-normal variate is always less than 

its mean value [5]. 

The Weibull distribution. It should be noted that if the Weibull 

parameters B and v are equal to 1 and 0, respectively, that the Weibull 

distribution is the same as an exponential distribution with parameter 9 

(9=%) equal to 1. If the random variable X has a Weibull distribution with 

parameter B, a, and v and if random variable Y has an exponential 

distribution with parameter 9=1 (where Y = [(X-v)/a]s) then X and aY1~+v have 

the same distribution, mean, and variance: 

where 

P.x = E(aY 11P + v) = aE(Y 11
P) + v 

E(X 2 ) = E(aY 11P + v)
2 = a2E(Y 21P) + 2vaE(Y 11P) + Y 2 

E(X -r) 

= f(r+l) (for exponential distribution} 
9r 



Lytton and Zollinger 

where 

r = Gamma function 
r = 1/B, 2/B, · · ·, n/B 

therefore 

and 

E{Y 11
') = r [1 + ~ l 

E{Y 21
'} = r [1 + ~] 

11x = ar [1 + ~ J + v 

"~- E{X 2
) - lllxl 2 

= a
2 

{ r[l + ~]- [1 + ~]J} 
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The Weibull distribution depends on B and a and not on v. The parameter v 

is a location parameter which does not affect the shape of density function. 

The Gumbel distribution. The expected value and variance of a random 

variable X can be derived from the higher-order moments of the variable, 

since the probability distribution would be completed if all of the moments 

of a random variable were known. Therefore, a function ((known as a moment­

generating function) by which all of the moments can be generated is a 

method of providing for the probability distribution of a random variable. 

A moment-generating function, denoted as Gx(s), of a random variable X 

is defined as the expected value of e•x: 

Gx ( s) = E(e •X) 
where s is a deterministic variable. The corresponding moment-generating 

function for PDF fx(X) is: 
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Gx(s) = J_: e•xfx(x) dx 

and 

dGx(s) 
I ... o = J_: x fx(X) dx = E(X) 

ds 
Similarly, 

d 2Gx(s) J oo I ... 0 = __ x 2f x ( x) dx = 
ds 2 -

which can be used to find Var (X), since: 

Var(X) = E(X 2 ) - JL~ 

The Type I Asymptotic Form. For the Type I largest value, the 

standardized extremal variate (S) can be defined as: 

in which the moment-generating function of S is: 

G
5 

( t ) = E ( e ts) 

= J_: e ts e -sexp[ -e -s] dS 

If r = e~ and ds = -(dr)/r, then: 

Gs ( t) = Jo oo e tS e -r dr 

= fo 00 e -tlnre -r dr = fo 00 r -te -r dr 

= r o - t) 

(15) 

The derivatives of G5 (t) (evaluated at t=O) provide the moments of S, Gumbel 



Lytton and Zollinger 

[15] showed ·that: 

E(S) = d Gs(t) 
dt 

= 

Var(S) = E(S 2
) - I.L~ 

dr(l) 

dt 
= 1 = 0.577216 ... (Euler the number) 

= d 
2Gs ( t) _ I.L2 _ d 2r ( 1) _ I.L2 _ 

1
2 + 7£

2 
_ 

1
2 = 7£

2 

ds 2 s - dt 2 s - 6 6 
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The moments of a Type I extremal variate may be evaluated from equation 15 

xn = I.L x. 

and 

s = u +- = n 
an 

I.L + .:L 
n a 

n 

Similar analysis will provide the mean and variance for the smallest value. 

The Type II Asymptotic Form. If Xn has the Type II asymptotic 

distribution given by equation 14 with parameters vn and k, then the 

distribution of ln Xn will have the Type I asymptotic form with: 

an = k 

The standardized extremal variate is: 

s = k {ln xn - ln vn) 

X 
= k ln ~ 

vn 
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In terms of moment-generating functions, the t~e moment of X" is: 

E(Xnt} = vnt E [elt!RIS') 

= v_'G.[~] = v: r r -~] 
for t<k: 

X" = llx = v" r [I - .!] • k 

and for k~2: 

E (x;) = v. r [1 - ~] 

~ = v" [ r [1 - ~] - r> [1 - ~ ~ 
Similar expressions can be found for the smallest value by replacing v" by 

v1 (the characteristic smallest value of the initial variate X). 

The Type III Asymptotic Form. The standardized Type III extremal 

variate for the largest value is: 

S = an {Xn - Un} 

[
w -X l = -k ln - n 

w- w 
- n 

w- X e -Sik = - n 

w- w 
- n 

E ~ - X")' = ~ - w")' E (e -talk) 

= ~ - W0 )' G, {-t/k} 

= ~ - wn)' r (I + t/k) 

which provides for the t~e moment of~ - X" which leads to the moment of X" 
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and the mean of X" = P.x 
~ 

thus 

Px. = !! - ~ - wJ r [1 + ~) 

E~ - XJ' = ~ - w.)'r ~ + ;) 
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Similar expressions can be found for the smallest value by replacing~ with 

The distributions which have been discussed above are summarized in 

Tables 1 and 2 and are only a few of the types of distributions which may 

be selected for engineering design analysis. Other distributions are 

provided in the tables but are not elaborated. 
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Table 1. Common Distributions and Their Parameters. 

IDistribut ion Probability density function Parameters Relation to Mean 
(PDF) or mass function (PMF) and Variance 

Normal 
_1 exp[-.!(~}1 

p., (1 
Vu (X) a2 (Gaussian) fx(x) = = 

~a 2 a 
-•<x<• 

Lognormal 
_1_ exp [-.!(In X- 1n 

A, ( 
E(X) exp (1 + 1,i{2) fx(x) = . 

.f'B{x 2 { Vu (X) . E2 (X) (ee" - 1] 
X :tO 

Weibull 
~ (X ~ V r1 

exp [-(X ; y )J if X :t y 
a, B. 11 

CIIE (Y
1
''/ + V E(X) . 

fx(x) . 
y (X~") 0, X< V 
. 

var (X) = 1112 {r (1 + 1) -[r (1 + i m 
Exponential 

1e-Ax X :tO 
A 

var (X) 1/1 fx(x) = . 
E(X) = k/v 

Ganma 
v (vx)~<-1 e.._ 

ll, k 
k/v2 

fx(x) = x:tO Var (X) . 
rck> E(X) . 

" 
Rayleigh 

~ exp [ 1 ·H~n 
a 

(2 - .!l ai2 fx(x) . X :tO Var (X) . 
E(X) . (a +; /2 

Binomial 
(~)p"(l-p)ll->< 

p 
E(X) px(x) . . np 

Var(X) = np (1 - p) 
X = 0, 1, 2, ... , n 

Geometric 
p (l - p)&-1 

p 
B(X) l/p px(x) . . 

X • 0, 1, 2, . . . Var (X) . (1- p)/p2 
B(X) . vt 

Poisson ll 
Vu(X) 

px(x) (vt)" 8 -..t = vt . 
XI 

X= 0, 1, 2, ... 
Uniform 1 a, b 

fx(x) = a<x<b Vu(X) = 1 (b- a) 2 
b-a 12 

Triangular 
2 (x- a) 

a, b, u i (a+ b + u) fx(x) . 
b"'"="i "ii""'='a asxsu E(X) . 

= 2 (b- X) usxsb Var (X) . 1 (a2+bz+uz 
b"'"="i "j):"'U 18 - ab- au- bu) 

Beta 
(x - a)q-1 (b - x)•-1 

a, b, q, r 
fx(x) = 1 E(X) . a+ ___g_ (b- a) 

B (q,r) (b - a)q••-1 q+r 
asxsb var (X) . 5I! (b- a) 2 

(q+r) 2 (q+r +l) 



Table 2. The Three Types of Asymptotic Extremal Distributions. 

Tall 
Characteristics Cumulative 

Asymptotic of Initial Distribution Standard 
Type Variate Extreme Function Mean Value Deviation 

I Exponential Largest exp(-e -•.ex,- u,.IJ u + .Q.:.E! -~-
II IIIII 

~·" 
Smallest exp(-e•1 1x1 - u11J u - 0.577 • 

1 •• 
~·. 

II Polynomial Largest 

exp[1 (;:rJ v .. r (1 - ~) v11 [r (1 - ~) - J'2 (1 - t)f 
Smallest 

exp[- ( ;:rl v1r (1 - ~) v1 [r (1 - ~) - r (1 - t)f 
III Bounded (in Largest 

exp[1 (:: ~:rJ lrl - (lfl - wn) r (1 + ~) (lfl - wn) [r (1 + ~) - J'2 {1 + t)f' direction of 
extreme) 

Smallest 

exp[- ( ~: : :rJ E + cw. - E) r (t + ~) (W1 - E) [r (1 + i) - r (1 + ~)f' 

Standard 
Extremal 

Variate, S 

11111 (X11 - U.,) 

-tl.l (Xl - Ul) 

k ln Yn 
v .. 

k ln .!!. 
yl 

-k ln (•- zn) 
ll!- W11 

-k ln ( z1 - ') 
W1 - E 

r 
'< 
c+ 
c-t-
0 
:;:, 

AI 
:;:, 
a. 
N 
0 __, 
__, 

:;:, 
10 
(!) 
~ 

CX> 
U1 
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APPENDIX II I 

PAVEMENT CRACKING FOR EQUIVALENT LOADS 

Fatigue Damage (D) = D (n, N1} 

where 

n = actual traffic equivalent load applications 
Nfi = number of equivalent load applications to reach an unacceptable 

where 

level of distress 

Fatigue Cracking (C) = 100Prob [D>1] (percent} 

= 100 J,· p(x} dx 

p(x} = probability density function for damage (for normal, log normal, 
and Weibull distributions} 

X = (D -D) = n - n [__!_]; aD = Jvar D 
aD Nfl aD 

c = 100 J oo p ~ n - "] 1 l dx 
1 ~ Nti Jvar D J 
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100 

c 

0 

N 1 

-------------------· ~ ~innun 
: Acceptable 
: Cracking 
' 
I 

' 

Variance of fatigue damage 

where 

ao 
an = 

= 

Var (n) = 
Var (N1) 

var [DJ = [:~]' var en> • [:~.r var CN,l 

variance of load applications 
= variance of load applications to failure 

87 
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Var [D] = [~J Var(n) + [~:] Var(~) 
ao = ..!.. [var (n) + D2Var (Nt) r 

Nt 

a. f 2 Var(~) r cv 2 q2 
= - l+D = 

Nt Var(n) x2 

= an f + cv'~r 
Nt cv 2n 

X = n - n ~ [ cv'~r - 1 + 
Nt an cv 2n 

-n - n = 

a. f cv 2Nr +--
cv 2n 

dx dn = 

a. {I + cv 2Nr 
cv 2n 




