Houston East End Safety Study

Final Report by the

Center for Transportation Safety
Texas Transportation Institute
Texas A\&M University System

Prepared
 for the

Houston-Galveston Area Council
 Metropolitan Planning Organization

February 2004

ACKNOWLEDGEMENTS

The authors acknowledge the contribution of the sponsoring agencies, in particular:

Houston-Galveston Area Council
Ned Levine, PhD
Alan Clark

Texas Department of Transportation
Stuart Corder
Sally Wegmann

Ursurla Williams
Dan Raine

John Gaynor

City of Houston Department of Public Works and Engineering
Rick Grochoske, P.E. Lilibeth Andre
Nicole Flannory John VandenBosch, P.E.
The authors would also like to thank the participating members of the technical advisory committee for the project who served as the stakeholders, in particular:

City of Houston Mayor's Office
Leonel Castillo
City of Houston City Council
Octavia Evangelista Williams - Councilman Robinson's Office
Jose Soto - Councilwoman Alvarado's Office
Injury Prevention Center of the Texas Children's Hospital
Susan Hirtz
Houston Police Department
Jack Hanagriff
Greater East End Management District
Mary Margaret Hanson
Martin Chavez

DISCLAIMER

The preparation of this document was financed in part through grants from the U.S. Department of Transportation under Section 112 of the 1973 Federal Aid Highway Act and Section 8(d) of the Federal Transit Act of 1964, as amended. The contents of this document does not necessarily reflect the official views or policy of the Federal Highway Administration, Federal Transit Administration, U.S. Department of Transportation, Texas Department of Transportation, City of Houston, Houston-Galveston Area Council, the Texas Transportation Institute, Texas A\&M University, and other local agencies included.

Table of Contents

CHAPTER 1 - INTRODUCTION 1
Background 1
Scope of Work 1
CHAPTER 2 - TECHNICAL ADVISORY TASK FORCE MEETING 7
CHAPTER 3 - BROADER STAKEHOLDER TASK FORCE MEETING 9
CHAPTER 4 - OBTAIN/ANALYZE CRASH DATA. 11
Data Resources. 11
Data Analysis 11
TABLE 14. SUMMARY OF PEDESTRIAN CAUSALITY CRASHES (1998-2000) 21
PEDESTRIAN ACTION 21
Light Condition When Pedestrian Injured 21
Injured Pedestrian Age Range $=2-72$ 21
Time of Day When Pedestrian Injured 21
TABLE 15. SUMMARY OF BICYCLIST CAUSALITY CRASHES (1998-2000) 22
Light Condition When Bicyclist Injured 22
Time of Day When Bicyclist Injured. 22
CHAPTER 5 - OBTAIN/ANALYZE TRAFFIC OPERATIONAL DATA. 27
Data Resources 27
Data Analysis 27
Preliminary Findings 35
CHAPTER 6 - OBTAIN/ANALYZE LAND USE AND STREET INVENTORY DATA 37
Data Resources 37
Data Analysis 37
Preliminary Findings 44
CHAPTER 7 - DETERMINE CRASH PATTERNS AND CAUSAL RELATIONSHIPS 45
Data Resources 45
Data Analysis 45
Pedestrian/Bicycle Crashes 45
Primary Arterial Crashes 50
Major Signalized Intersection Crashes 51
Collector Street Crashes 54
CHAPTER 8 - ESTABLISH ENGINEERING COUNTERMEASURE IMPROVEMENTS 55
Data Resources 55
Data Analysis 55
Major Arterials 55
Minor Arterials and Collector Streets 56
Bicycle/Pedestrian Facilities 57
Other Recommended Countermeasures 57
CHAPTER 9 - ESTABLISH EXPECTED CRASH REDUCTIONS FROM COUNTERMEASURE59
Data Resources. 59
Data Analysis 59
Major Arterial 60
Major Signalized Intersections 61
Driveway Access Control 62
Minor Stop-Controlled Intersections 62
CHAPTER 10 - ESTABLISH EXPECTED COSTS OF COUNTERMEASURES 65
Data Resources 65
Cost of Countermeasures 65
CHAPTER 11 - PRIORITIZE IMPROVEMENTS BY PRELIMINARY BENEFIT-COST 71
Data Resources 71
Safety Improvement Index (SII) Analysis 71
CHAPTER 12 - CONCLUSIONS/RECOMMENDATIONS 77
APPENDICES 79
Appendix A A-1
Appendix B B-1
Appendix C C-1
Appendix D D-1
Appendix E E-1
Appendix F F-1
Appendix G G-1
Appendix H H-1
Appendix I I-1
Appendix J. J-1

LIST OF TABLES

Table 1. Crashes by Vehicle and Sex 12
Table 2. Crashes by Age 12
Table 3. Crashes Potentially Susceptible to Engineering Correction 12
Table 4. Number and Percent of Crashes by Severity (1998-2000). 16
Table 5. Casualties by Person Injured (1998-2000) 16
Table 6. Crash Severity by First Harmful Event (1998-2000) 16
Table 7. Crash Severity by Traffic Control and Intersection Relationship (1998- 2000) 17
Table 8. Crash Severity by Vehicle Movement/Manner of Collision (1998-2000) 18
Table 9. Crash Severity by Light Condition (1998-2000) 18
Table 10. Crash Severity by Time of Day (1998-2000) 19
Table 11. Crash Severity by Weather Condition (1998-2000) 19
Table 12. Number and Percent of Crashes by Severity in which At Least One Driver was Reported as Driving Under the Influence of Alcohol or Drugs. 20
Table 13. Number and Percent of Crashes by Severity in which At Least One Driver was Reported as Driving Over the Speed Limit or at a Speed Unsafe for Conditions 20
Table 14. Summary of Pedestrian Causality Crashes 21
Table 15. Summary of Bicyclist Causality Crashes 22
Table 16. Summary of Spot Speed Study. 33
Table 17. Summarization by Land Use Classification 38
Table 18. General Countermeasures for Crash Patterns and Their Probable Causes 46
Table 19. East End Crash Rate Comparison Urban Principal Arterials (4 or more lanes) 52
Table 20. East End Crash Rate Comparison Urban Principal Arterials (4 or more lanes) Intersection/Intersection Related Crashes. 53
Table 21. Estimated Cost of Striping/RPM Application on US 90 Alternate. 67
Table 22. Estimated Cost of Major Intersections Signal Head Improvements. 68
Table 23. Estimated Cost of Major Intersection Striping/Pavement marking Improvements per Approach 69
Table 24. Summary of Estimated Costs for Striping/Marking Improvements by Major Intersection 70
Table 25. Estimated Costs for Installation Of Parking Restriction Signs 70
Table 26. Safety Improvement Project Input Data for TTI 74
Table 27. Safety Improvement Index Priority Rankings 75

LIST OF FIGURES

Figure 1. All Pedestrian and Bicycle Crashes Reported by Texas Children's Hospital. 13
Figure 2. Pedestrian and Bicycle Crashes Reported by Texas Children's Hospital Amenable to Engineering Countermeasures 14
Figure 3. All 1998-2000 DPS Reported Crashes 23
Figure 4. 1998-2000 DPS Reported Crashes Amenable to Engineering Countermeasures. 24
Figure 5. All HPD Reported Crashes. 25
Figure 6. HPD Reported Crashes Amenable to Engineering Countermeasures 26
Figure 7. TTI Traffic Counts 28
Figure 8. 2001 TxDOT Houston District Coverage Counts 29
Figure 9. All Applicable Traffic Counts 30
Figure 10. East End Traffic Control Devices 32
Figure 11. Spot Speed Study Locations 34
Figure 12. Aerial Photograph Showing Land Use and Area Characteristics 39
Figure 13. Aggregated East End Land Use Map 40
Figure 14. East End Inventory Map 41
Figure 15. Bus Stop and Crash Data Correlation. 43

Executive Summary

This study was conducted by the Center for Transportation Safety, a part of the Texas Transportation Institute and the Texas A\&M University System. In response to concerns about the traffic, bicycle, and pedestrian safety within the Houston East End (also known as the Eastside), which is bound by the streets of Navigation on the North, Harrisburg on the South, and bisected by Wayside. The Injury Prevention Center of the Texas Children's Hospital identified this area as having a concentration of crashes involving children. The Houston Police Department also identified this area as having a high number of motor vehicle crashes, and the Houston-Galveston Area Council identified this area as being among the top 400 crash hot spots in the region as well as being within the top 10 pedestrian crash hot spots.

Crash investigation reports and street operational data were analyzed in detail along with extensive field studies and observations. Preventable crash patterns were identified and remedial safety improvement countermeasures determined. Estimated improvement costs were related to potential crash reduction benefits and calculations of Safety Improvement Index made for all recommended countermeasures.

The recommended countermeasures of striping and raised pavement marker application on US 90 Alternate mainlane are indicated to hold potential to be highly beneficial and a first priority for funding. The US 90 Alternate intersection safety improvements recommended are also highly cost-effective and should be funded as a second priority. While also cost-beneficial, the recommended safety improvements associated with parking restrictions to improve sight distance at other Stop-controlled intersections within the East End Study Area will be controversial and potentially the most difficult politically to implement. The last recommended safety improvement countermeasure involving redesigned and constructed driveway access in the 6800 Block of Harrisburg is marginally beneficial at the most conservative of cost estimates.

The total initial estimated cost for implementation of all recommended engineerng safety improvements within the East End Study Area is approximately $\$ 160,000$ to reduce annual vehicle collisions by approximately 30 crashes representing an estimated annual cost savings of over $\$ 550,000$. It must be emphasized that these are preventable crashes susceptible to remediation by engineering countermeasures. The preponderance of crashes (and pedestrian/bicycle conflicts) occurring within the East End are behaviorally influenced by speed, alcohol, parental supervision, etc. Remediation or reduction in the frequency of these crashes is dependent and influenced by both increased and diligent law enforcement and/or continued and increased school and community traffic safety education programs.

Chapter 1 - Introduction

Background

The Houston-Galveston Area Council (H-GAC) in conjunction with the Texas Department of Transportation (TxDOT) and the City of Houston (COH) have sponsored a study on traffic safety in the East End of Houston. They have engaged the Center for Transportation Safety, Texas Transportation Institute (TTI), to conduct the study.

The study is in response to concerns about the traffic, bicycle, and pedestrian safety of the Houston East End (also known as the Eastside), which is bound by the streets of Navigation on the North, Harrisburg on the South, and bisected by Wayside. The Injury Prevention Center of the Texas Children's Hospital has identified this area as having a concentration of crashes involving children. The Houston Police Department has also identified this area as having a high number of motor vehicle crashes. Finally, the Houston-Galveston Area Council has identified this area as being among the top 400 crash hot spots in the region as well as being within the top 10 pedestrian crash hot spots.

Scope of Work

The following Tasks comprise the scope of work for the Houston East End Safety Study.

Task 1: Technical Advisory Task Force Meeting

Within two weeks after study initiation, a meeting with a technical advisory group (selected by H-GAC) would be held. The objective of the meeting would be to solicit assistance and assimilate any and all data relevant to the study scope. This meeting would also affect coordination of efforts, designate a schedule of activities, and delineate any specific agency concerns or issues to the project staff. Analysis methodology would be highlighted and discussed. A schedule of tasks would be delineated from this meeting.

Task 2: Broader Stakeholder Task Force Meeting

Within a month after study initiation, a meeting with a group of Broader Stakeholders (selected by H-GAC) would be scheduled and conducted. The objective of the meeting is to solicit support for the goals of the study and to solicit general assistance from the Stake-holders. The details of the study schedule, as discussed in Task 1, would be presented. Any broader concerns of the Stakeholders will be discussed.

Task 3: Obtain/Analyze Crash Data

With the assistance of the Houston Department of Public Works and Engineering and the Houston Police Department complete crash records will be obtained for the past two years and analyzed in detail. Collision and condition diagrams will be prepared to determine common crash types, locations, and patterns. Crashes will be segregated by those susceptible to correction as opposed to others involving compromising factors (alcohol, speed, etc). Variables of influence to crashes will be summarized for comparative purposes in analysis. A brief report summarizing the methodology and the types of crashes will be prepared and presented to the sponsor.

Task 4: Obtain/Analyze Traffic Operational Data

With the assistance of the Houston Department of Public Works and Engineering, operational data related to vehicular, bicycle, and pedestrian movements will be obtained an analyzed. Areas of congestion, delay, or conflicts will be determined. Origins and destinations of traffic generation and/or attraction will be established if possible. A rough survey (count) of pedestrian and bicycle volumes will be conducted to establish pedestrian and bicycle traffic patterns. A brief report summarizing the methodology and the traffic patterns will be prepared and presented to the sponsor.

Task 5: Obtain/Analyze Land Use and Street Inventory Data

Available land use and street inventory data will be obtained and analyzed. Location, function, and warrant of traffic control devices within the study area will be reviewed for existing performance as related to crash history. Any potential improvements will be
noted as relevant to traffic safety. A brief report summarizing this data will be p.upued and presented to the sponsor.

Task 6: Determine Crash Patterns and Casual Relationships

All of the previously discussed data will be assimilated to formulate, as strictly as possible, crash patterns and causative factors. Special focus will be given to pedestrian and bicycle crashes, especially in proximity to schools. Any follow-up investigation to specific crashes will be conducted as necessary. A brief report summarizing the methodology, the crash patterns, and the causal relationships will be prepared and presented to the sponsor.

Task 7: Establish Engineering Countermeasure Improvements

Causal patterns or factors of influence to crashes within the study area will be addressed, where applicable, with engineering countermeasure improvements or alternative improvements. These recommendations will follow accepted and published guidelines unless there are special conditions or circumstances associated with a special crash scenario. A brief report summarizing the methodology and the suggested countermeasures will be prepared and presented to the sponsor.

Task 8: Establish Expected Crash Reduction from Countermeasure

With the assistance of the Texas Department of Transportation and the City of Houston Department of Public Works and Engineering, each of the proposed countermeasures identified in Task 7 will be analyzed with respect to expected crash reductions, by type of crash and by severity level. The basis of these estimates will come from the above mentioned agencies, TTI's own experience, and existing national databases on crash reductions will be prepared and presented to the sponsor.

Task 9: Establish Expected Costs of Countermeasures

With the assistance of the Texas Department of Transportation and the City of Houston Department of Public Works and Engineering, each of the proposed countermeasures identified in Task 7 will be analyzed with respect to costs. Detailed cost estimates will be
provided for each countermeasure. These will include equipment costs, construciun costs, and maintenance costs. A brief report summarizing the methodology and the expected costs will be prepared and presented to the sponsor.

Task 10: Prioritize Alternative Improvements by Preliminary Benefit-Cost

For each countermeasure identified in Task 7, a benefit-cost analysis will be conducted. This will allow preliminary benefit-cost ratio calculations for all countermeasures or alternatives to allow funding and implementation prioritization. Advantages and disadvantages of all alternatives will be discussed as they relate to benefit-cost priority. A brief report summarizing the methodology, the expected benefit-costs, and the recommended prioritization will be prepared and presented to the sponsor.

Task 11: Preliminary Final Report

A preliminary final report will be prepared and presented to $\mathrm{H}-\mathrm{GAC}$ and the sponsor. Five (5) copies will be produced. The report should consolidate all the previous steps and should read as a coherent document, separated into chapters corresponding to the above tasks.

Task 12: Receive Comments from Sponsor and Stakeholders Group

Within three weeks of receiving the preliminary final report, H-GAC, TxDOT, the sponsor, and the other stakeholder agencies will review the preliminary final report and will provide detailed written comments to TTI.

Task 13: Final Report

Within three weeks of receiving the written comments received from H-GAC, TxDOT, the sponsor, and the stakeholders, TTI will provide a final report that summarizes the entire study. Each of the above tasks will be sections of the report. The aim is to produce a document that will serve as a framework for implementing study recommendations as well as a "best practices" prototype for conducting a safety study.

Task 14: Final Meeting with Broader Stakeholders

The final report will be presented at a meeting of the Broader Stakeholders. TTI is expected to make a presentation on the general conclusions and to invite discussion. Twenty (20) copies of the final report will be given to the sponsor, H-GAC, TxDOT, and the Stakeholders.

This preliminary report is produced in satisfaction of Task 11 and is a compilation of work efforts from Tasks $1-10$ which will be presented as independent chapters in the remainder of this report.

Chapter 2 - Technical Advisory Task Force Meeting

The Houston East End Safety Study was initiated by signed contract on April 1, 2003. A meeting was held on April 2, 2003 between TTI staff and H-GAC Safety Program staff. Crash data to be furnished by H-GAC was identified and discussed. Task outline for the study was reviewed. Contacts within other advisory agencies were noted and communication protocol established initial field observations were scheduled as well as an advisory Task Force meeting to be held in lieu of a stakeholder meeting as designated in Task 2. This meeting was tentatively scheduled for April 21, 2003 with no formal presentation required. The purpose of this initial meeting was to solicit study inputs for follow-up investigation.

Chapter 3 - Broader Stakeholder Task Force Meeting

A meeting was held at the H-GAC conference room on April 21, 2003 in satisfaction of the Task 2 objective. The following individuals representing their associated agencies in as follows:

1. Ned Levine
2. Alan Clark
3. Dan Raine
4. Thomas Funney
5. Martin Chavez
6. Susan Hirtz
7. Nicole Flannory
8. Leonel Castillo
9. Sylvia Cavazos
10. Elizabeth Andre
11. John Gaynor
12. Stuart Corder
13. John Mounce
14. Ida van Schalkwyk
15. Robert Benz
16. Rene Smith

H-GAC
H-GAC
H-GAC
H-GAC
East End District
Texas Children's Hospital
City of Houston
City of Houston
City of Houston
City of Houston
TxDOT
TxDOT
TTI
TTI
TTI
TTI

Based upon input from this meeting, subsequent field observations were conducted during both daytime and nighttime by TTI staff on May 7, 2003. Observations were made at different locations throughout the Study Area. As an example, the following field observations were noted at Thomas Edison Middle School in the 6900 Block of Avenue I:

Thomas Edison Middle School area. (6901 Avenue I)

- Approximately 3:30 PM students began exiting school. By 3:40 most appear to have left school grounds
- Most students leave via Ave I school entrance
- Single gate from school parking lot for vehicles \& pedestrians. Consider closing to vehicles during student exit rush period
- Parked cars along Ave I awaiting student pick-up.
- Several bicycle/push-cart street venders along Ave I and surrounding streets.
- Marked cross walks in area, but many students walk (apparently comfortably, without any concern for traffic) in and out of traffic surrounding school. Appear to stay in street longer than necessary to cross.
- Much mid-block crossing on smaller streets around school (e.g., Avenue I, $70^{\text {th }}$ Street). Less mid-block crossing on nearby major streets (e.g., Sgt Garcia) where students were observed to use cross walk.
- Pedestrian gate from school grounds to mid-block on Sgt Garcia
- Poor sight distance from Ave I at Sgt Garcia intersection (looking south toward north bound one-way traffic on Sgt Garcia.) (near school)
- Re: Sidewalks in immediate vicinity of school:
- Obstructions on Ave I include a fire hydrant and residential property gates open onto sidewalk.
- Sidewalks are generally narrow, some in disrepair.
- On $70^{\text {th }}$ Street between Ave I and H: sidewalk on one side only.
- Check the layout of the major arterials then the sun might create visibility problems in the morning and afternoon along these routes - signal backplates might then aid visibility of the signals.
- Traffic controls along some routes are not consistent - at one intersection you might have a stop and in the next case the cross traffic are stopped. This might cause confusion.
- A speed hump exists on $78^{\text {th }}$ close to the intersection with Navigation. No warning is provided - this maybe a hazard because it is not consistent - there are no other observed traffic calming devices in the area.
- The intersection of Parkview/Harrisburg is a non-typical intersection: intersection area too big and might cause confusion, limit with road markings to improve readability
- Day labor was observed at the northwestern corner of Harrisburg/ $78^{\text {th }}$
- The person we interviewed at the metro stop observed crashes at the bank - the bank is located on the corner of Harrisburg and $71^{\text {st }}$
- At the Thomas Edison Middle School: corner clearances are very poor and at the intersection of Garcia and Avenue I the fencing is a corner obstruction that greatly reduces the ability of a driver to observe traffic along Garcia when exiting Avenue
- The area west of Wayside (north of Harrisburg): there seems to be some sort of construction effort in the area
- New walkways and driveways are being installed in the area
- Check the connection between pedestrian related crashes and metrostops
- The intersection of Harrisburg/Latham is staggered - this might increase the likelihood of pedestrian crashes (pedestrians won't know where to cross and the requirements on the driver are also higher) and other crashes.
- The T-junction of Harrisburg and Bryan - there is a park, a swimming pool and other recreational facilities south of Harrisburg - might lead to higher pedestrian exposure rates and likelihood of pedestrian crashes
- There is a metrostop at the intersection of Lockwood/Harrisburg
- The school on Lamar (just off $75^{\text {th }}$) and south of Harrisburg: roads are very narrow and sidewalks are not maintained well (overgrowth) and obstructed by parked vehicles
- Review metro stop locations in cases where pedestrian crashes coincide (maybe the metro bus organization is willing to discuss the location of their stops with us).

Appendix A provides photo documentation of these field inspections along with associated captions.

Chapter 4 - Obtain/Analyze Crash Data

Data Resources

The following crash record files were obtained from the designated agencies:

1. EMS crash data: 1998-2001. These data were collected by the EMS trauma centers at Herman Memorial Hospital and Ben Taub Hospital and compiled by the Injury Prevention Center at the Texas Children's Hospital and geocoded by HGAC.
2. DPS crash data: 1998-2000. These data were collected by the Accident Records Bureau of the Department of Public Safety who obtained the data from the police departments of individual jurisdictions according to the DPS reporting criteria. The data were then compiled and geocoded by H-GAC.
3. HPD crash data: December 2001 - January 2003 were collected by the Houston Police Department using the state reporting form (ST 3). The data were compiled and geocoded by TTI.

Data Analysis

Four years of EMS crash data for bicycles and pedestrians were collected from Texas Children's Hospital. The EMS crash data set was pared down to just the East End Study Area, which resulted in 26 crashes. Of those crashes, over 80 percent were pedestrian crashes and males were twice as likely to be involved in a crash as shown in Table 1. All of the bicycle crashes were male, making up almost 20 percent of the total crashes. All the crashes in the study area involve Hispanic children with ages ranging from 2 to 14 . Forty-two percent of the crash victims were $0-5$ or not of school age, 38 percent were in elementary school, and 19 percent were in middle school (Table 2). Table 3 represents the interpretation of comments to determine which crashes are potentially susceptible to engineering correction. Almost a quarter of the crashes were identified as educational issues for parents or children. Thirty percent of the crashes did not have any comments thus it was not possible to determine if there is an engineering correction possible. Driveway, hit and run, and crashes involving speeding were also removed from the dataset since those require behavioral corrections and are not engineering related. The severity of all crashes could not be determined but most comments just listed abrasions and contusions with no fatalities or severe injury. Total and correctable plots of the Texas Children's Hospital Pedestrian and Bicycle crashes are shown in Figure 1 and Figure 2.

Table 1. Crashes by Vehicle and Sex

Female Pedestrian	7	27%
Male Pedestrian	14	54%
Male Bike	5	19%
Total	26	100%

Table 2. Crashes by Age

$0-5$	11	42%
$6-11$	10	38%
$12-15$	5	19%
Total	26	100%

Table 3. Crashes Potentially Susceptible to Engineering Correction

	Total		Removed Speeding and Hit and	
Correctable	10	38%	7	27%
Non-Correctable	16	62%	19	73%
Total	26	100%	26	100%

Figure 1. All Pedestrian and Bicycle Crashes Reported by Texas Children's wropital

Figure 2. Pedestrian and Bicycle Crashes Reported by Texas Children's ${ }^{* *}$,ital Amenable to Engineering Countermeasures

There were twenty-eight pedestrian crashes and 11 bicycle crashes found in the iر 2000 DPS crash data set. Summary findings were also produced from the 1998-2000 DPS crash file to establish trends based on relevant contributory variables. These resulting crash statistics are presented in Tables 4-15.

The total number (488) of reportable crashes from the 1998 - 2000 DPS crash data occurring in the Houston East End Study Area is plotted by location in Figure 3. Figure 4 plots only those crashes susceptible to correction by engineering countermeasures; i.e. no alcohol, drugs, excessive speed, or unlicensed driving behavior is a crash identified as susceptible to correction. The total number of crashes, susceptible to correction, is reduced to 98 occurring within the study area.

Working collision and condition diagrams were produced by major street corridor and intersection within the Houston East End Study Area for all complete, hard copy crash data obtained from the City of Houston Police Department (HPD) for the period December, 2001, through January, 2003. These data are also plotted by location as shown in Figure 5. The total number of crashes (231) within the designated time period was reduced as previously discussed to only those crashes susceptible to correction by engineering countermeasures. These crashes (197) are plotted by location in Figure 6. The following major intersections within the study area were focused on:

1. Navigation @ Wayside
2. Navigation @ Sgt. Macario Garcia
3. Wayside @ Canal
4. Canal @ Sgt. Macario Garcia
5. Capitol @ Wayside

Narrative summaries from the HPD hard copy crash data for the major intersections in the study area are given in Appendix B. Likewise, similar narrative crash data summaries for street corridors within the study area are given in Appendix C.

Table 4. Number and Percent of Crashes by Severity (1998-2000)						
	Crash Severity (Most serious injury sustained in crash)					
	Fatal	Incapacitating Injury	Non-incapacitating Injury	Possible Injury	PDO (Non- Injury)	Total
	4	12	67	255	150	488
Total	0.8	2.5	13.7	52.3	30.7	100
Percent of all Crashes						

Table 5. Casualties by Person Injured (1998-2000)

Table 5. Casualties by Person Injured (1998-2000)						
	Casualty Severity					
Person injured	Fatality	Incapacitating Injury	Non-incapacitating Injury	Possible Injury	Non-injury	Total
Drivers	1	6	48	258	579	892
Passengers	1	4	32	226	-	263
Pedestrians	1	6	14	12	-	33
Bicyclists	1	0	4	6	-	11
Other	0	0	1	4	-	5
Total Casualties	4	16	99	506	579	1204

Table 6. Crash Severity by First Harmful Event (1998-2000)

	Crash Severity (Most serious injury sustained in crash)						
First Harmful Event	Fatal	Incapacitating Injury	Non-incapacitating Injury	Possible Injury	PDO (NonInjury)	Total	Percent of all crashes
Another Motor Vehicle in Transit	2	8	43	221	88	362	74.2
Fixed Object	-	-	3	13	43	59	12.1
Other Non-collision	-	-	-	-	1	1	0.2
Other object	-	-	-	-	2	2	0.4
Overturned	-	$-$	1	-	-	1	0.2
Parked Car	-	1	4	4	15	24	4.9
Bicyclist	1	-	3	6	-	10	2.0
Pedestrian	1	3	12	9	-	25	5.1
RR Train	-	-	1	2	1	4	0.8
Total	4	12	67	255	150	488	100
Percent of all Crashes	0.8	2.5	13.7	52.3	30.7	100	

		Crash Severity (Most serious injury sustained in crash)					
	Type of Traffic Control	Fatal	Incapacitating Injury	Non-incapacitating Injury	$\begin{gathered} \hline \text { PDO (Non- } \\ \text { Injury) } \\ \hline \end{gathered}$	Possible Injury	Total
Intersection	Center stripe or divider	1	,	4	11	17	33
	Flashing red light	-	-	-	1	1	2
	None shown or inoperable	-	-	-	1	1	2
	RR gates or signal	-	-	-		1	1
	Stop \& go signal	1	3	24	21	57	106
	Stop sign	1	1	10	14	39	65
	Turn marks	-	-	-	1	-	1
Intersection Total		3	4	38	49	116	210
Intersection Related	Center stripe or divider	-	-	1	3	6	10
	Stop \& go signal	-	2	4	13	38	57
	Stop sign	-	-	-	2	6	8
	(blank)	-	-	1	-	-	1
Intersection Related Total		0	2	6	18	50	76
Driveway access	Center stripe or divider	-	-	1	14	27	42
	None shown or inoperable	-	1	-	-	4	5
	Officer, flagman	-	-		1		1
Driveway access Total		0	1	1	15	31	48
Non-intersection	Center stripe or divider	1	4	15	52	47	119
	None shown or inoperable	-	1	5	16	8	30
	RR gates or signal	-	-	1		2	3
	Stop \& go signal	-	-	1			1
	(blank)	-	-	-	-	1	1
Non-intersection Total		1	5	22	68	58	154
Grand Total		4	12	67	150	255	488

Table 8. Crash Severity by Vehicle Movement/Manner of Collision (1998-2000)							
	Crash Severity (Most serious injury sustained in crash)						
Vehicle Movement/ Manner of Collision	Fatal	Incapacitating Injury	Non-incapacitating Injury	Possible Injury	PDO (NonInjury)	Total	Percent of all crashes
1 Vehicle going straight	2	3	21	29	60	115	23.6
1 Vehicle backing	0	1	0	0	0	1	0.2
1 Vehicle turning left	0	0	3	2	0	5	1.0
1 Vehicle turning right	0	0	0	2	2	4	0.8
1 Vehicle, other	0	0	0	1	0	1	0.2
2 Vehicles -approaching at angle	1	3	27	103	40	174	35.7
2 Vehicles - opposite directions	0	0	4	14	14	32	6.6
2 Vehicles -going same direction	1	5	12	104	33	155	31.8
2 Vehicles -other	0	0	0	0	1	1	0.2
Total	4	12	67	255	150	488	100

Table 9. Crash Severity by Light Condition (1998-2000)										
	Crash Severity (Most serious injury sustained in crash)									
Light Condition	Fatal	Incapacitating Injury	Non-incapacitating Injury	Possible Injury	PDO (Non- Injury)	Total	Percent of all crashes			
Darkness-Lighted	2	3	28	58	49	140	28.7			
Darkness-Not Lighted	0	0	3	7	8	18	3.7			
Dawn	0	1	0	3	3	7	1.4			
Daylight	2	8	35	183	87	315	64.5			
Dusk	0	0	1	4	3	8	1.6			
Total	4	12	67	255	150	488	100			

Table 10. Crash Severity by Time of Day (1998-2000)

Table 10. Crash Severity by Time of Day (1998-2000)										
	Crash Severity (Most serious injury sustained in crash)									
Time of Day	Fatal	Incapacitating Injury	Non-incapacitating Injury	Possible Injury	PDO (Non- Injury)	Total	Percent of all crashes			
Midnight-4AM	0	0	8	21	17	46	9.4			
4AM-8AM	2	1	4	16	18	41	8.4			
8AM-Noon	0	2	4	40	26	72	14.8			
Noon-4PM	2	4	4	12	79	29	126			
4PM-8PM	0	3	21	68	32	124	25.8			
8PM-Midnight	0	2	18	31	28	79	16.2			
Total	4	12	67	255	150	488	100			

Table 11. Crash Severity by Weather Condition (1998-2000)

	Crash Severity (Most serious injury sustained in crash)						
Weather	Fatal	Incapacitating Injury	Non-incapacitating Injury	Possible Injury	PDO (NonInjury)	Total	Percent of all crashes
Clear (cloudy)	4	12	64	237	133	450	92.2
Raining	0	0	3	16	16	35	7.2
Fog	0	0	0	1	1	2	0.4
Smoke	0	0	0	1	0	1	0.2
Total	4	12	67	255	150	488	100

Table 12. Number and Percent of Crashes by Severity in which At Least One Driver was Reported as Driving Under the Influence of Alcohol or Drugs (1998-2000)

| Under the Influence of Alcohol or Drugs (1998-2000) | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Crash Severity (Most serious injury sustained in crash) | | | | | |
| | Fatal | Incapacitating
 Injury | Non-incapacitating
 Injury | Possible
 Injury | PDO (Non-
 Injury) | Total |
| Number of Crashes | 4 | 12 | 67 | 255 | 150 | 488 |
| Number of DUI Crashes | 1 | 3 | 8 | 15 | 14 | 4 |
| Percent of all Crashes Reported
 as DUI | 25.0 | 25.0 | 11.9 | 5.9 | 28.0 | 8.4 |
| Note: All but 3 of the 'DUI' crashes are alcohol as opposed to drug-related. | 41 | | | | | |

Table 13. Number and Percent of Crashes by Severity in which At Least One Driver was Reported as Driving Over the Speed Limit or at a Speed Unsafe for Conditions (1998-2000)

Over the Speed Limit or at a Speed Unsafe for Conditions (1998-2000)							
	Crash Severity (Most serious injury sustained in crash)						
	Fatal	Incapacitating Injury	Non-incapacitating Injury	Possible Injury	PDO (Non- Injury)	Total	
Number of Crashes	4	12	67	255	150	488	
Number of Speed-related Crashes	1	2	14	64	34	115	
Percent of all Crashes Reported as Speed-related	25.0	16.7	20.9	25.1	22.7	23.6	
Note: All but 3 of the Speed-related crashes are 'speed unsafe for conditions' as opposed to 'speed over the limit'							

Table 14. Summary of Pedestrian Causality Crashes (1998-2000)						
		Number				Number
Vehicle Driver Factors Contributing to Crash (1)			Pedestrian Action			
Speed Unsafe for Conditions		6	Crossing road at intersection or crosswalk			6
Fail to yield ROW		1	Crossing road NOT at intersection or crosswalk			3
Disregard stop \& go signal		2	Getting on/off a vehicle			1
Other factor		1	Working in roadway			1
N/A		24	Injured Pedestrians reported committing a violation			
						8
Vehicle Driver Factors Contributing to Crash (2)			Injured Pedestrian reported drinking			1
Fail to yield ROW to Pedestrians		5				
DWI		1	Light Condition When Pedestrian Injured			
Other factor		4	Daylight			20
N/A		25	Darkness - Lighted			11
			Darkness - Not Lighted			2
$0-5$ yrs old		5	Time of Day When Pedestrian Injured			
6-12 yrs old		3	Midnight-4AM			2
13-20 yrs old		4	4AM-8AM			1
21-65 yrs old		15	8 AM - Noon			4
>65		5	Noon-4PM			6
Unknown age		1	4PM-8PM			13
			8 PM- Midnight			7
Pedestrian Crashes by Traffic Control and Intersection Relationship						
Type of Traffic Control	Driveway access	Intersection	Intersection Related	Nonintersection	Total	
Center stripe or divider	1	3	-	5	9	
None shown or inoperative	1	-	-	6	7	
RR gates or signal	-	-	-	1	1	
Stop \& go signal	-	2	7	1	10	
(blank)	-		1	-	1	
Total	2	5	8	13	28	

Table 15. Summary of Bicyclist Causality Crashes (1998-2000)									
		Number				Number			
Vehicle Driver Factors Contributing to Crash (1)									
Speed Unsafe for Conditions		1	Injured Bicyclist reported committing a violation			4			
Fail to yield ROW		1	Injured Bicyclist reported drinking			1			
Disregard stop sign/light		1	Light Condition When Bicyclist Injured						
N/A		8							
Vehicle Driver Factors Contributing to Crash (2)			$$		Daylight	10			
			Darkness - Lighted			1			
Fail to yield ROW to Bicyclist		1							
DWI		1							
Other factor		1	Time of Day When Bicyclist Injured						
N/A		8	Midnight-4AM			0			
			4AM-8AM			0			
Injured Bicyclist Age Range $=12-49$			8 AM - Noon			1			
$0-5$ yrs old		0	Noon-4PM			4			
6-12 yrs old		1	4PM-8PM			5			
13-20 yrs old		3	8 PM- Midnight			1			
21-65 yrs old		7							
>65		0							
Bicycle Crashes by Traffic Control and Intersection Relationship									
Bicycle Crashes by Type of Traffic Control Driveway access Center stripe or divider 1		Intersection	Intersection Related	Nonintersection	Total				
Center stripe or divider	1	1	-	-	2				
None shown or inoperative	-	-	-	1	1				
Stop \& go signal	-	3	1	-	4				
Stop sign	-	2	2	-	4				
Total	1	6	3	2	11				

Figure 3. All 1998-2000 DPS Reported Crashes

Figure 4. 1998-2000 DPS Reported Crashes Amenable to Engineering Coun

Figure 5. All HPD Reported Crashes

Chapter 5 - Obtain/Analyze Traffic Operational Data

Data Resources

The following operational data were obtained from the designated agencies:

1. 24-hour Traffic Volume Counts January 2000 from the City of Houston, Department of Public Works and Engineering, Traffic Management \& Maintenance Branch (website);
2. 24 -hour Count Record 2000 to 2002 data from the Texas Transportation Institute Houston Office were obtained for the study area;
3. 2001 Traffic Map containing the 24 -hour urban traffic volumes from Texas Department of Transportation;
4. Origin and Destination data were obtained from H-GAC's modeling group to determine percentage of through traffic;
5. Traffic Signal Inventory and selected signal timings from the City of Houston, Department of Public Works and Engineering; and
6. Traffic Speed Data were collected by the research team to aid in the crash analysis.

Data Analysis

Traffic volume data were collected from the City of Houston's website. An extensive database is available; however, no counts from this data set were within the study area. The Texas Transportation Institute's internal traffic volumes database contained three traffic counts within the study area and is shown in Figure 7. The majority of the traffic counts (27) was from TxDOT and is shown in Figure 8.

Figure 7. TTI Traffic Counts.

Figure 8. 2001 TxDOT Houston District Coverage Counts.

The traffic volume data sets ranged from electronic to paper copies. All di summarized to 24 -hour traffic counts to be utilized for crash frequency calculations. Data were obtained on all major roadways as shown in Figure 9.

Figure 9. All Applicable Traffic Counts.

A detailed listing of the counts can be found in Appendix D and E. Traffic volu*~~ vere checked for consistency and site investigation combined with cursory traffic analysis did not reveal any congestion problems.

Bicycle and pedestrian counts were requested from the City of Houston but none were available. No counts were made based on the low number crashes susceptible to engineering correction and the lack of a crash pattern or grouping.

Origin and destination data were obtained from H-GAC's modeling group to determine the percentage of through traffic. The smallest possible analysis area is based on the Traffic Analysis Zone (TAZ) data bounded on the North by Canal, on the East by Sergeant Macario Garcia, and on the South and West by the railroad tracks. No formal data were provided except an email indicating that the estimated percentage of local traffic to all traffic was 21.8 percent (local traffic defined as a trip with an origin or destination within this boundary: North to Navigation, South to the Missouri-KansasTexas (MKT) rail line, East to the Houston Belt and Terminal (HB\&T) rail line). An additional piece of useful information was that the percentage of truck traffic to all vehicles was estimated at 9.1 percent. Reports of high truck volume and site inspection confirmed this estimate.

A query of the City of Houston's Traffic Control Device database was used to determine the locations of the traffic signals, stop signs, and other traffic elements in the area. The following list and Figure 10 provides a breakdown of the number and the location of traffic control devices in the study area. Copies of the traffic signal timings for the following intersections were obtained and clearance intervals were verified for compliance. No deficiencies were found. All traffic signals appear to have the proper clearance interval, amber phase, and all red indications.

- Traffic Signals13
- Four-way Stop Signs 3
- Two-way Stop Signs 61

Figure 10. East End Traffic Control Devices.

A spot speed study conducted at selected intersections approaches. These appro ${ }^{-1 \ldots}$ were selected based on the preliminary crash analysis. The following intersections were surveyed:

- Wayside and Navigation,
- Wayside and Canal,
- Wayside and Capitol, and
- Sergeant Macario Garcia and Canal.

Figure 11 shows a map of the location and direction where the speed surveys were conducted. Selected approaches were studied based on the crash data and collision diagrams. Speeds of the lead vehicles or non-influenced vehicles were collected. Most locations were mid-block and care was taken to conceal the laser gun to ensure an unbiased sample. Vehicles approaching a red light were not included in the sample. Table 16 presents a summary of the $85^{\text {th }}$ percentile speeds. Most locations had an $85^{\text {th }}$ percentile speed below the posted speed limit. The raw data, tabulated speed statistics, and graphs were generated for each location and are presented in Appendix F.

Table 16. Summary of Spot Speed Study.

Location \#	Street Name	Direction	Speed Limit	$85^{\text {th }}$ Percentile Speed
1	Wayside @ Navigation	SB	40	42
2	Navigation @ Wayside	EB	35	34
3	Wayside @ Canal	SB	40	40
4	Canal @ Wayside	EB	30	31
5	Canal @ Sgt. Macario Garcia	EB	30	32
6	Sgt. Macario Garcia @ Canal	NB	40	38
7	Wayside @ Capitol	SB	40	32
8	Capitol @ Wayside	WB	30	30
9	Capitol @ Wayside	EB	30	28

Figure 11. Spot Speed Study Locations.

Preliminary Findings

Based upon the examination of the available traffic data for the East End Study, there appears to be no congestion or delay problems. Simple volume-to-capacity ratios, engineering judgment, and site inspections verified these results. Traffic signal timing clearance intervals were found to be adequate for the posted and operating speeds on the corridors. No deficiencies were found. The lack of bicycle and pedestrian crash clusters did not warrant any bicycle or pedestrian counts. The spot speed study doesn't indicate any speed-related problems in the area.

Chapter 6 - Obtain/Analyze Land Use and Street Inventory Data

Data Resources

The following land use and street inventory data were obtained from the designated agencies:

1. Aerial Photographs (TxDOT)
2. Study Boundary Area (TTI)
3. Parcel and Land Use (H-GAC)
4. Demographics: Population and Vehicle Tenure (H-GAC)
5. Bus Stops (50) and Routes (METRO)
6. HISD Boundaries (HISD) 4 Elementary, 1 Middle, and 1 High School
7. City of Houston Data:
a. Traffic Signals (13)
b. Stop Signs (64)
c. Schools (2)
d. Parks (2 just outside study area)
e. Libraries (1)
f. HPD Stations and Districts (2)
g. Multi-Service Medical Center (1)
h. Fire Station (1)
i. Churches (13)
j. Railroad
k. Water Features
8. Super neighborhoods
m. Subdivisions
n. Council Districts (2)
o. MUD
p. Zip Codes

Data Analysis

The above data were obtained from the responsible agency and imported into a Geographical Information System (GIS). These layers are shown on the maps in Figures 12 through 14. Aerial photos are used for verification of land use and to confirm inventory information. The road inventory data, traffic counts, and traffic operational data combined with the crash data were used to determine if there were any cause and effect relationships between land use or attractions and crash patterns.

The land use was classified and summarized by like-travel patterns. Table 17 shows the totals for each classification of land use by parcel. In some cases, joined parcels are not aggregated in the database. For example, at one of the school locations the database lists aggregated parcels on one side of the block and individual parcels on the other side, but both are included in the school property.

Table 17. Summarization by Land Use Classification

Classification	No. of Parcels	Area
Short-Term Shopping	1.6%	1.9%
Long-Term Shopping	4.9%	6.6%
Industrial/Warehouse	3.7%	21.7%
Housing	10.5%	6.9%
Single Family Housing	59.3%	28.7%
Children's Activity Area	2.6%	13.4%
Parking	2.6%	1.9%
Vacant Land	11.6%	16.7%
Miscellaneous	3.2%	2.2%

The classifications used in Table 17 are based on like traffic patterns, characteristics, and vehicle type. For instance Short Term Shopping is based land use such as gas stations, convenience stores, fast food, etc.; land uses that have high turnover rates. Long Term Shopping are grocery stores and department stores where patrons are on site for an hour or more. Industrial/warehouse has peaking characteristics in the AM and PM but also has some delivery vehicles throughout the day. The other classifications are similar, again being based on how traffic accesses the parcel, the length of time (dwell time), and vehicle type (passenger cars and trucks, delivery trucks and 18 wheelers, and pedestrians and bicyclists).

Figure 12. Aerial Photograph Showing Land Use and Area Characteristics.

Figure 13. Aggregated East End Land Use Map.

Figure 14. East End Inventory Map.

No patterns could be found with respect to schools, libraries, and other attractions. However, there appears to be a cluster of crashes east of Sergeant Macario Garcia on Harrisburg: six rear ends, three right angle crashes, two sideswipes, and a head-on crash. Land use and access management seem to be contributing factors to these crashes. Shortterm and long-term shopping areas tend to have the highest number of crashes, but they also have the highest turnover rate. Land use and access management seem to be problems throughout the area, although no direct correlation can be made. On the streets, the close vicinity of 18 -wheel trucks to residential housing could be the cause of many potential conflicts. Too many driveways and poor pavement conditions tend to keep the speeds low on the major streets. Minor streets have lots of parking and therefore speeds are relatively low as well.

While there would appear to be a correlation between bus stops and crashes, as shown by Figure 15, no pattern of casual relationship could be established. Only four bus stop locations have not had a crash. Nine of the 26 EMS bicycle or pedestrian crashes are in the vicinity of the 50 bus stops. Far more crashes from the Department of Public Safety (DPS) data set were in close proximity to a bus stop. From DPS data only seven of the bus stops did not have a crash in close proximity to the bus stop.

A summarization of the demographic data obtained from the 2000 census revealed the following facts:

- Ethnicity (based on 2000 census table PL2 Hispanic or Latino, and not Hispanic or Latino by Race [73])
- Black 16.7\%
- Hispanic 40.6\%
- White 39.5\%
- Asian 2.3\%
- Other 0.9\%
- Median Household Income $\$ 22,430$
- Auto Availability
- No Car Available 22.4%
- One Car Available 44.0%
- Two Cars Available 21.7%
- Three Cars Available 8.8%
- Four Cars Available 2.4%
- Five Cars Available 0.7%

Figure 15. Bus Stop and Crash Data Correlation.

Preliminary Findings

The population in the area is predominately poor with low education levels and is made up of a large immigrant population predominantly from Mexico and Central America. It is possible that these factors may contribute to some of the crashes in the study area and improvements in driver's education could improve safety above-and-beyond the engineering roadway improvements. Non-ideal land use patterns have formed over the years and mixed industrial and residential land use remains. The mix of large trucks near children walking and bicycling, residential housing near industrial warehouses are typically not considered desirable and can pose severe conflicts. Street parking, tight driveways spacing, building set back, and poor sight distance are contributing causes for some of the side street crashes. On the main streets, poor access management practices create unanticipated maneuvers both to access the property and/or avoid other vehicles making those maneuvers.

Site investigation shows that old drainage design, narrow lanes, and bus traffic on Harrisburg could contribute to the crashes on this street. Harrisburg has a large crown, or center of the roadway compared to the gutter, and at each cross street the two crowns for each street intersect, causing a hump on the major arterial. This hump can cause drivers to avoid this lane or change lanes to avoid the hump. This curb lane is typically used by buses, and as a result there are ruts and potholes present.

Chapter 7 - Determine Crash Patterns and Causal Relationships

Data Resources

In addition to the previously discussed crash and operational data collected and analyzed in Tasks 3-5, East End intersection collision diagrams and hard copy crash data summaries are incorporated in Appendix E of this report. All of this information will be assessed relative to Table 18, General Countermeasures for Crash Patterns and Their Probable Causes, which is taken from National Cooperative Highway Research Program (NCHRP) Report No. 91 by Zeeger, et al.

Data Analysis

Based upon data assimilation and analyses conducted within Chapters 4-6, the following crash patterns identified within the East End Study Area and causal relationships determined to be associated with those crash patterns will be discussed.

Pedestrian/Bicycle Crashes

Pedestrian and Bicycle crashes were specified and located within the East End Study Area from both the EMS and DPS records as previously discussed. Examination of this data indicated no geographic or temporal aggregation of these types of crashes within the East End Study Area. No association can be established with children involved in these types of crashes with routes or access to public schools. No pattern related to bus stop locations has been established; or any significant frequency of conflicts or collisions at intersections or marked crosswalk locations. Assessments of contributing factors given in the TCH medical treatment records indicates lack of parental supervision and knowledge of risk led to the majority of injuries to children involved in pedestrian and bicycle collisions.

Table 18
General Countermeasures for Crash Patterns and Their Probable Causes

CRASH PATTERN	PROBABLE CAUSE	GENERAL COUNTERMEASURE
Right-angle collisions at Unsignalized intersections	Restricted sight distance	-Remove sight obstructions -Restrict parking near corners -Install stop signs (see MUTCD) -Install warning signs (see MUTCD) -Install/improve street lighting -Reduce speed limit on approaches -Install signals (MUTCD) -Install yield signs (MUTCD) -Channelize intersections
	Large total intersection volume	-Install signals (see MUTCD) -Reroute through traffic
	High approach speed	-Reduce speed limit on approaches -Install rumble strips
Right-angle collisions at Signalized intersections	Poor visibility of signals	-Install advanced warning devices (see MUTCD) -Install 12-in. signal lenses (see MUTCD) -Install overhead signals -Install visors -Install back plates -Improve location of signal heads -Add additional signal heads -Reduce speed limit on approaches
	Inadequate signal timing	-Adjust amber phase -Provide all-red clearance phases -Add multi-dial controller -Install signal actuation -Retime signals -Provide progression through a set of signalized intersections
Rear-end collisions at Unsignalized intersections	Pedestrian crossing	-Install/improve signing or marking of pedestrian crosswalks -Relocate crosswalk
	Driver not aware of intersection	-Install/improve warning signs
	Slippery surface	-Overlay pavement -Provide adequate drainage -Groove pavement -Reduce speed limit on approaches -Provide "SLIPPERY WHEN WET" signs
	Large numbers of turning vehicles	-Create left or right-turn lanes -Prohibit turns and/or increase curb radii

Table 18 (Continued)

General Countermeasures for Crash Patterns and Their Probable Causes

CRASH PATTERN	PROBABLE CAUSE	GENERAL COUNTERMEASURE
Rear-end collisions at signalized intersections	Poor visibility of signals	-Install/improve advance warning devices -Install overhead signals -Install 12 in . signal lenses (see MUTCD) -Install visors -Install back plates -Relocate signals -Add additional signal heads -Remove obstacles -Reduce speed limits on approaches
	Inadequate signal timing	-Adjust amber phase -Provide progression though a set of signalized intersections
	Pedestrian crossings	-Install/improve signing or marking of pedestrian crosswalks -Provide pedestrian "WALK" phase
	Slippery surface	-Overlay pavement -Provide adequate drainage -Groove pavement -Reduce speed limit on approaches -Provide "SLIPPERY WHEN WET" signs
	Unwarranted signals	-Remove signals (see MUTCD)
	Large turning volumes	-Create left or right-turn lanes -Prohibit turns -Increase curb radii
Pedestrian crashes at intersections	Restricted sight distance	-Remove sight obstructions -Install pedestrian crossings -Install/improve pedestrian crossing signs -Reroute pedestrian paths
	Inadequate protection for pedestrians	-Add pedestrian refuge islands
	Inadequate signals	-Install pedestrian signals (see MUTCD)
	Inadequate signal phasing	-Add pedestrian "WALK" phase -Change timing of pedestrian phase
	School crossing area	-Use school crossing guards
Pedestrian crashes between intersections	Driver has inadequate warning of frequent mid-block crossings	-Prohibit parking -Install warning signs -Lower speed limit -Install pedestrian barriers
	Pedestrians walking on roadway	-Install sidewalks

Table 18 (Continued)

General Countermeasures for Crash Patterns and Their Probable Causes

CRASH PATTERN	PROBABLE CAUSE	GENERAL COUNTERMEASURE
Pedestrian crashes between intersections	Long distance to nearest walk	-Install pedestrian crosswalk -Install pedestrian actuated signals (see MUTCD)
Pedestrian crashes at driveway crossings	Sidewalk too close to traveled way	-Move sidewalk laterally away from highway
Left-turn collisions at intersections	Large volume of left turns	-Provide left-turn signal phase -Prohibit left turns -Reroute left-turn traffic -Channelize intersection -Install STOP signs (see MUTCD) -Create one-way streets -Provide turning guidelines (if there is a dual left turn lane)
	Restricted sight distance	-Remove obstacles -Install warning signs -Reduce speed limit on approaches
Right-turn collisions at intersections	Short turning radii	-Increase curb radii
Fixed-object collisions	Objects near traveled way	-Remove objects near roadway -Install barrier curbing -Install breakaway feature light poles, signposts, etc. -Protect objects with guardrail
Fixed-object collisions and/or vehicles off roadway	Slippery pavement	-Overlay existing pavement -Provide adequate drainage -Groove existing pavement -Reduce speed limit -Provide "SLIPPERY WHEN WET" signs
	Roadway design inadequate for traffic conditions	-Widen lanes -Relocate islands -Close curb lanes
	Poor delineation	-Install/improve pavement markings -Install roadside delineators -Install advance warning signs (e.g., curves)
Sideswipe collisions between vehicles traveling in opposite directions or head-on collisions	Roadway designs inadequate for traffic conditions	-Install/improve pavement markings -Channelize intersections -Create one-way streets -Remove constructions such as parked vehicles -Install median divider, widen lanes

Table 18 (Continued)

General Countermeasures for Crash Patterns and Their Probable Causes

CRASH PATTERN	PROBABLE CAUSE	GENERAL COUNTERMEASURE
Collisions between vehicles traveling in same direction such as sideswipe, turning, or lane changing	Roadway design inadequate for traffic conditions	-Widen lanes -Channelize intersections -Provide turning bays -Install advance route or street signs -Install/improve pavement lane lines -Remove parking -Reduce speed limit
Collisions with parked cars or cars being parked	Large number of parking turnovers	-Prohibit parking -Change from angle to parallel parking -Reroute through traffic -Create one-way streets -Create off-street parking -Reduce speed limit
	Roadway design inadequate for present conditions	-Widen lanes -Change from angle to parallel parking -Prohibit parking -Reroute through traffic
Collisions at driveways	Left turning vehicles	-Install median divider -Install two-way left-turn lanes
	Improperly located driveway	-Regulate minimum spacing driveways -Regulate minimum corner clearance -Move driveway to side street -Install curbing to define driveway location -Consolidate adjacent driveways
	Right-turning vehicles	-Provide right-turn lanes -Restrict parking near driveways -Increase the width of the driveway -Widen "through" lanes -Increase curb radii
	Large volume of through traffic	-Move driveway to side street -Construct a local service road -Reroute through traffic
	Large volume of driveway traffic	-Signalize driveway -Provide acceleration and deceleration lanes -Channelize driveway
	Restricted sight distance	-Remove sight obstructions -Restrict parking near driveway -Install/improve street lighting -Reduce speed limit*

In summary, no pattern or causal relationship of pedestrian and bicycle crashes, wi.um he East End Study Area, susceptible to remediation (crash reduction) by engineering safety improvements can be established. Field observations did note several locations where physical countermeasures would be recommended; however, no pattern of crashes can be identified to be directly associated. These suggested safety improvements will be discussed in the Chapter 8 report. Education of both parents and children seems to hold the most potential for influence (reduction) in these types of conflicts.

Primary Arterial Crashes

Alternate US Highway 90 consists of the one way pairs of Wayside and Sgt. Macario Garcia. These roadway facilities are multi-lane with a traffic demand of over 30,000 vehicles per day. Major signalized intersections exist at Navigation, Canal, Harrisburg, and Capitol. For the 1.3 mile section of US 90 Alternate within the East End Study Area, the crash rate was over three (3) times the State and Harris County rate for urban principal arterials (4 or more lanes) over the time period 1998-2000. Of the 488 total crashes within the East End Study Area for 1998 2000, 343 crashes occurred on Wayside or Sgt. Macario Garcia. Less than one third of these crashes were at major intersections. This data is shown in Table 19. No geographic, temporal, or environmental aggregation of crashes was established in examination.

From analysis of the hard copy crash data (2002) over 20 percent of all crashes occurring on the Wayside/Sgt. Macario Garcia routes within the East End Study Area are sideswipe crashes associated with lane position. These crashes are typically described as "failure to drive in single lane, changed lanes when unsafe, turned improperly, and failure to control speed." Analysis indicates that reinforcement of lane demarcation with improved lane striping and the addition of raised pavement markers (RPM's) holds potential to influence (reduce) this historical pattern of crashes.

In addition, there are numerous Stop-controlled, intersecting side streets onto Wayside/Sgt. Macario Garcia. These at grade intersections exhibit restricted quadrant sight distance due to corner development with minimum setbacks. These visibility restrictions are further exaggerated with no parking restrictions. This creates a situation of a vehicle stopped legally behind the Stop
sign on the minor intersecting street without clear and sufficient visibility of major racu vehicles for a safe judgment to enter or cross the major street (Wayside/Sgt. Macario Garcia). The result is a substantial number of right angle collisions due to failure to yield right of way.

Analysis indicates that the institution and enforcement of parking restrictions along Wayside/Sgt. Macario Garcia in proximity to the intersection corners with minor, Stop-controlled streets holds potential to provide safe and required sight distance to influence (reduce) the historical pattern of crashes at these locations.

Major Signalized Intersection Crashes

As stated previously, less than one third of all the crashes which occurred during the period 1998-2000 on US 90 Alternate (Wayside/Sgt. Macario Garcia) were at the major signalized intersections with Canal, Navigation, Capitol and Harrisburg. Calculated crash rates, from the hard copy data, for these major signalized intersections within the East End Study Area are shown in Table 20 except for the Capitol/Wayside intersection, these crash rates are all greater than both the State and Harris County rates as determined for the 1998-2000 annual average on urban principal arterials (4 or more lanes) and for intersection/intersection related crashes. Further analysis of the hard copy crash reports indicates two predominate patterns associated with these crashes at these designated major signalized intersections. One, violation of the traffic control signal (ran red light) and, two, improper turn at or within the intersection. Red light running was a causative factor in $20-50 \%$ of all intersection crashes, while an improper turn, either as wide turn, turn from wrong lane, or as part of an unsafe lane change, and was designated as a causative factor in 25-40\% of all intersections crashes. Countermeasures of influence (reduction) to these indicated intersection crashes include increased size of signal faces (8 inch to 12 inch), improved lane line demarcation both in approach as well as with turn definition, and reinforcement of lane assignment for thru and turning movements with signs and/or pavement word/symbol messages. Any or all of these potential remedial measures hold potential for safety improvements (reduced crashes). No other patterns of crashes based on temporal or environmental influence was established.

Table 19

East End Crash Rate Comparison
Urban Principal Arterials (4 or more lanes)

Table 20

East End Crash Rate Comparison

Urban Principal Arterials (4 or more lanes)
Intersection/Intersection Related Crashes

	Total Crashes per 100 Million Vehicle Miles (MVM)
State of Texas	$\mathbf{1 3 3 . 7 7 *}$
Harris County	$\mathbf{1 2 5 . 2 4 *}$
Canal @ Wayside	$\mathbf{1 4 2 . 4 4 * *}$
Canal @ Sgt. Macario Garcia	$\mathbf{1 7 5 . 8 0 * *}$
Capitol @Wayside	$\mathbf{1 0 3 . 0 6 * *}$
Navigation @ Wayside	$\mathbf{1 6 1 . 8 6 * *}$
Navigation @ Sgt. Macario Garcia	$\mathbf{1 4 3 . 6 0 * *}$
*Three Year Average (1998-2000)	
*December, 2001 thru January, 2003	

Collector Street Crashes

A total of 145 crashes occurred in 1998-2000 on all streets other than US 90 Alternate (Wayside/Sgt. Macario Garcia). This represents only approximately 30 percent of the total (488) crashes in the East End Study Area, for the stated three years. These crashes were, for the most part, randomly occurring with no outstanding aggregation based on location, time, or environment. However, a few selected causal associations were note worthy.

First, analysis indicated several crashes occurring again at cross street, Stop-controlled intersections with restricted visibility due to parking in proximity to the intersection or, in some cases, private property obscurements (vegetation, fence, etc). Focused and enforced restrictive ordinances could possibly reduce the number of selected right angle, right-of-way obviated crashes which have occurred historically at certain locations.

Second, proliferations of turning crashes are exhibited along strip commercial development on Harrisburg East of Capitol. Numerous and uncontrolled driveways into these businesses seem to be contributing factor to a cluster of crashes at this location. A study should be undertaken to more safely and efficiently provide access to this development with consolidated, well designed, and controlled driveway access. Access improvement and management at this location along Harrisburg could potentially influence (reduce) those crashes which have historically occurred due to turning conflicts at this site.

Chapter 8 - Establish Engineering Countermeasure Improvements

Data Resources

From the determined crash patterns and causal relationships specified in Chapter 7, associated alternative countermeasures will be established by work code and definition as per guidelines utilized by the Texas Department of Transportation (TxDOT) for safety improvements instituted under the Federal Hazard Elimination and Safety Program (HES). A complete listing, by category, of these work codes, description and definition of each, directed preventable crash, and related crash reduction factor is given in Appendix H.

Data Analysis

Based on the crash patterns and causal relationships established in Chapter 7, the following safety countermeasure improvements are recommended and discussed.

Major Arterials

A predominant crash pattern established on US 90 Alternate (Wayside/Sgt. Macario Garcia) is sideswipe crashes related to proper and safe maintenance of lane position, i.e., a vehicle attempting a mid-block lane change sideswipes an adjacent vehicle. It is recommended that lane lines be re-striped along each 1.3 mile one-way roadway and improved with the addition of raised pavement markers (RPM's). These safety improvements should be instituted in compliance with current and applicable Texas Department of Transportation (TxDOT) specifications. This would encompass TxDOT safety improvement Work Code 401, Install Pavement Markings, and Work Code 406, Install Raised Reflective Pavement Markers. At the major signalized intersections along US 90 Alternate; i.e. Canal @ Wayside, Canal @ Sgt. Macario Garcia, Capitol @ Wayside, Navigation @ Wayside, and Navigation @ Sgt. Macario Garcia, crash patterns associated with intersection turning movements and violation of signal control (red light running) were established. It is recommended that turning movements at these major signalized intersections are reinforced with striped or re-striped radial skip lines,
commonly referred to as cat tracks or chicken scratches. In addition, consideration snuuld be given to redundant communication of turning movements within these intersections with advance arrow directives either from signs or pavement markings. It is also recommended that the signals at all of the US 90 Alternate major intersections within the East End Study Area be upgraded from 8 inch to 12 inch diameter lens face to be more conspicuous to approaching vehicles as signal indications change. These improvements would be categorized by TxDOT as safety improvement Work Code 108, Improve Traffic Signals, and Work Code 401, Install Pavement Markings.

Minor Arterials and Collector Streets

A pattern of turning movement crashes associated with driveway access to commercial businesses was established within the 6800 block of Harrisburg. It is recommended that these egress and ingress movements be evaluated to allow a more safe and efficient access accommodation with fewer and improved driveway locations. This countermeasure would be generally defined under TxDOT safety improvement Work Code 219, Install Curb Control of Access.

At the Stop-controlled, side street intersections along $67^{\text {th }}$ street, it is recommended that parking be prohibited by restrictive markings and/or regulatory signs for a sufficient distance to allow safe and appropriate sight distance for ingress movements. This distance should be based upon the posted speed limit along $67^{\text {th }}$ street. This improvement would be categorized as safety improvements Work Code 117, Eliminate Parking.

Numerous, right angle crashes also occurred at random, Stop-controlled intersections from collector side streets with minor arterials; i.e. Harrisburg, Canal, Navigation, Capitol. Observations indicated selected locations had restricted sight distance due to parking, vegetation, and/or private property development. Consideration should be given to either enactment and/or enforcement of such ordinances to allow sufficient sight distance along the thru street for safe access accommodation. There is no direct TxDOT safety improvement work code to describe this countermeasure.

Bicycle/Pedestrian Facilities

As previously discussed, no pattern of aggregation of pedestrian and/or bicycle crashes could be established such to allow a recommendation for any independent engineering countermeasures. Pedestrian counts taken at the intersection of Canal @ St. Macario Garcia and at a mid-block school crosswalk location in proximity did not show sufficient pedestrian hourly movements to meet the minimum warranting criteria of the Texas Manual on Uniform Traffic Control Devices (MUTCD) for consideration of a pedestrian signal. Although not associated with a demonstrative pattern of pedestrian/bicycle conflicts, field observations indicated other recommended safety improvements (countermeasures).

First, sidewalks on many collector streets, specifically Avenue I, are narrow and in disrepair at many locations. On $70^{\text {th }}$ Street, between Avenue I and Avenue H, a sidewalk exists on only one side of the street. Because of narrow right-of-ways in which sidewalks exist, residential property gates, left open, block sidewalk traversal. There exist many locations of sidewalk discontinuity and poor maintenance. The narrow sidewalks force bicycle vendors into the streets creating conflicts with thru vehicles.

Second, many cross-walks have worn and faint markings with compromised nighttime reflectivity. These should be inspected and re-striped more often to insure safe and adequate visibility.

Other Recommended Countermeasures

Pavement surface on Harrisburg was compromised at several locations with potholes, bumps/humps, and severe rutting and cracking in the outside lane of travel. Lane widths on Harrisburg are narrow, and while no direct correlation with crashes can be established, these indicated pavement surface discontinuities may have contributed to selected sideswipe crashes.

Chapter 9 - Establish Expected Crash Reductions from Countermeasure

Data Resources

For each designated engineering improvement countermeasure, an assigned value for expected reduction in selected frequency and types of crashes will be utilized to allow calculation of benefits. These crash or crash reduction factors have been established historically through research studies and State Department's of Transportation experience. Values used by the Texas Department of Transportation (TxDOT) in Safety Improvement Index (SII) calculations are shown in Appendix I by individual work code. A national survey of comparative crash reduction factors was conducted by the Texas Transportation Institute in 1995. These survey results are given in Appendix J.

Data Analysis

The Texas Department of Transportation (TxDOT) utilizes a methodology for assessing the potential benefits of implementing various types of safety improvement countermeasures to affect a reduction in vehicular crashes of a specified pattern or description. These crashes are defined as those that are "preventable" or "correctable" and did not occur due to driver behavioral actions or inactions. This eliminates all crashes that involve alcohol or unsafe speed influence. Crash reduction factors, based on research and/or agency experience, are applied for commensurate countermeasures to allow calculation of expected safety benefits in terms of reduction in historical crashes. Crash reduction and associated safety benefits expressed as cost of crashes are applied based on severity category. These categories are given as follows:

K - Fatality
A - Incapacitating Injury
B - Non-Incapacitating Injury
C - Possible Injury
PDO - Property Damage Only

The National Safety Council (NSC) has calculated comprehensive costs for 2002 of une various severity classifications. These costs are shown as follows:

K (Fatality)	$\$ 3,470,000$
A (Incapacitating Injury)	$\$ 172,000$
B (Non-Incapacitating Injury)	$\$ 44,000$
C (Possible Injury)	$\$ 21,000$
PDO (Property Damage Only)	$\$ 2,000$

These severity classifications and NSC comprehensive crash costs will be used to calculate annual safety benefits estimated from expected crash reductions resulting from the implementation of safety improvement countermeasures recommended in Chapter 8 from crash patterns and causal relationships determined in Chapter 7.

Major Arterial

The following annual preventable crashes on US 90 Alternate (Wayside/Sgt. Macario Garcia) are recommended to be addressed with lane line improvements.

K -0	Preventable Crashes
A-2	Preventable Crashes
B-2	Preventable Crashes
C-3	Preventable Crashes
PDO-14	Preventable Crashes
Total-21	Preventable Crashes

The TxDOT Safety Work Codes for Install Striping (401) and Raised Pavement Marking Addition (406) give potential crash reduction factors of 20 and 25 percent respectively. While crash reduction factors applied in conjunction are not necessarily additive, a 30 percent crash reduction would be conservative and reasonable. Applied to the previous annual preventable
crashes, the resulting reduction in crashes and associated annual safety benefits woulu un as follows:
$K-0.0(\$ 3,470,000)=0$
$\mathrm{A}-0.6(\$ 172,000)=\$ 103,200$
B $-0.6(\$ 44,000)=\$ 26,400$
C-0.9 $(\$ 21,000)=\$ 18,900$
PDO-4.2 $(\$ 2,000)=\$ 8,400$
Total-6.3 $=\$ 156,500$

Major Signalized Intersections

The following annual preventable crashes occurring at the major signalized intersections of US 90 Alternate (Wayside/Sgt. Macario Garcia) with Capitol, Harrisburg, Navigation, and Canal are recommended to be addressed with signal and pavement marking improvements.

K -0	Preventable Crashes
A-2	Preventable Crashes
B-2	Preventable Crashes
C -16	Preventable Crashes
PDO - 14	Preventable Crashes
Total -34	Preventable Crashes

The TxDOT Safety Work Codes for Signal Lens Improvement (108) and Turn Stripe Addition (401) give potential crash reduction factors of 22 and 20 percent respectively. A 25 percent crash reduction would be conservative and reasonable. Applied to the previously specified annual preventable crashes, the resulting reduction in crashes and associated annual safety benefits would be as follows:
$K-0.0(\$ 3,470,000)=\$ 0$
$\mathrm{A}-0.5(\$ 172,000)=\$ 86,000$
B $-0.5(\$ 44,000)=\$ 22,000$
$\mathrm{C}-4.0(\$ 21,000)=\$ 84,000$
PDO - $3.5(\$ 2,000)=\$ 7,000$
Total $-8.5=\$ 199,000$

Driveway Access Control

The following annual preventable crashes on Harrisburg Avenue are recommended to be addressed through improved driveway access control within the 6800 Block.

K-0 Preventable Crashes
A-0 Preventable Crashes
B-0 Preventable Crashes
C-3 Preventable Crashes
PDO-7 Preventable Crashes
Total-10 Preventable Crashes

Minor Stop-Controlled Intersections

The TxDOT Safety Work Code for Driveway Access Control (219) indicates a potential crash reduction factor of 10 percent as conservative and reasonable. Applied to the previously designated annual preventable crashes, the resulting reduction in crashes and associated annual safety benefits is given as follows:
$K-0.0(\$ 3,470,000)=\$ 0$
$\mathrm{A}-0.0(\$ 172,000)=\$ 0$
$\mathrm{B}-0.0(\$ 44,000)=\$ 0$
$C-0.3(\$ 21,000)=\$ 6300$

PDO $-0.7(\$ 2,000)=\$ 1400$
Total $-1.0=\$ 7700$

The following annual preventable crashes occurring on all other collector/local streets within the East End Study Area at Stop-controlled intersections which are recommended to be addressed by parking restrictions and/or ordinances regulating sight distance obstructions on private property are as follows:
$\mathrm{K}-0 \quad$ Preventable Crashes
A-0 Preventable Crashes
B-4 Preventable Crashes
C-24 Preventable Crashes
PDO - 28 Preventable Crashes
Total-56 Preventable Crashes

The TxDOT Safety Work Code for Restrict Parking (117) gives a potential crash reduction factor of 32 percent. A factor of 25 percent would seem more conservative and reasonable. Applied to the previously listed annual preventable crashes, the resulting reduction in crashes and associated annual safety benefits is calculated as follows:
$K-0.0(\$ 3,470,000)=\$ 0$
$\mathrm{A}-0.0(\$ 172,000)=\$ 0$
B-1.0 $(\$ 44,000)=\$ 44,000$
$C-6.0(\$ 21,000)=\$ 126,000$
PDO $-7.0(\$ 2,000)=\$ 14,000$
Total $-14.00=\$ 184,000$

In summary, it is estimated that a total of approximately 30 annual crashes occurring within the East End Study Area representing an annual cost of over $\$ 550,000$ may be prevented by the implementation of the described safety improvement countermeasures. As can be seen, severity
and costs of crashes within the East End Study Area are relatively low due to lowei speeds and conditions which exist on streets of a more local and collector nature.

Again, other specific countermeasure improvements as discussed in Chapter 8 hold potential to improve overall safety within the East End Study Area. However, these recommended remedial actions could not be correlated with a known historical crash pattern to allow an estimate of potential reduction.

Chapter 10 - Establish Expected Costs of Countermeasures

Data Resources

Cost data for the recommended safety improvement countermeasures was obtained from Texas Department of Transportation (TxDOT) project bid prices submitted for contract lettings in recent months. This information was accessed from the TxDOT web site:
$\underline{\mathrm{http}: / / w w w . d o t . s t a t e . t x . u s . i n s t d o t \ g e o d i s t h o v i c s e r v e l u i d p r i c e l s o l o l . h t m ~}$
The remainder of this Task Report delineates specific cost items associated with the previously described engineering countermeasures.

Cost of Countermeasures

The recommended lane striping and raised pavement marking improvement for US 90 Alternate (Wayside and Sgt. Macario Garcia) were calculated based on four (4) lanes on each street with three (3) longitudinal lane line applications required. Sgt. Macario Garcia (SMG) has a 40 foot street cross-section with Wayside 66 feet wide North of Canal and 51 feet wide South of Canal. In the wider cross-sections on Wayside, an edge line is needed for edge of travelway definition with the possible introduction of a marked bike lane in the outside pavement area. There are twenty three (23) intersections with minor streets along the US 90 Alternate route over 1.3 miles in the East End Study Area.

Table 21 provides a summary of the cost calculations for the proposed major arterial safety improvements. The total cost is estimated to be approximately $\$ 8,000$ with a service life of $2-3$ years. Major intersection improvements recommended consisted of signal head lens enlargement (8 inch to 12 inch) and striping/pavement marking enhancements. Table 22 indicates the estimated costs for signal equipment change over. It is the understanding of the research staff that signal upgrades on US 90 Alternate have been programmed, however, not to date implemented.

Table 23 gives estimated costs for major intersection striping and pavement markirı improvements per intersection approach. Table 24 provides a summary of all approach costs by major intersection the service life for these proposed improvements is $2-3$ years.

The estimated cost to implement parking restrictions within the East End Study Area is based upon installing three (3) regulatory signs per block for 81 blocks. Costs are estimated for an approximate one (1) square foot of sign blank with pole assembly. Table 25 summarizes these estimated costs for parking restriction sign implementation. No costs are projected for enforcement of ordinances. Expected service life for these signs is $5-6$ years discounting vandalism.

It is not possible to strictly estimate countermeasure costs to address the need for improved access control within the 6800 Block of Harrisburg Avenue. A study needs to be undertaken to determine the impacts of driveway closures and/or consolidation to more safely accommodate both ingress and egress maneuvers to street adjacent commercial development. This assessment and associated implemented improvements could cost from \$50,000-\$100,000.

The estimated total initial cost for implementation of all recommended engineering countermeasures to affect improvements to street safety (crash reduction) within the East End Study Area is approximately $\$ 160,000$. This compares to an estimated annual cost savings in reduction in crashes of approximately $\$ 550,000$. Service lives of engineering safety improvement countermeasures follow guidelines given by TxDOT for the Hazard Elimination and Safety (HES) Program and are shown in Appendix K.

Table 21

Estimated Cost * of Striping/RPM

Application on US 90 Alternate

Major Arterial	Skip Lines	Edge Lines	Total Length (FT)	Less Int. (FT)	\# of 10 , Stripes Every 50 Feet	Striping Length (FT)	Striping Prep (\$)	RPM Prep (\$)	Striping Cost (\$)	RPM Cost (\$)	Totals Cost (\$)
SMG	3	--	6890	920	358.2	3582	\$813.26	\$35.82	\$496.29	\$1127.19	\$2472.55
Wayside	3	---	6770	920	351	3510	\$796.91	\$35.10	\$486.31	\$1104.53	\$2422.85
	---	2	4224	680	--	7088	\$1609.26	-	\$715.89	--	\$2325.15
	---	1	2546	240	-	2306	\$523.55	--	\$232.91	--	\$756.46
Total	---	---	---	---	709.2	16486	\$3742.98	\$70.92	\$1931.39	\$2231.72	\$7977.01

*Source: TxDOT Project Bid Prices, 2003

Table 22
Estimated Cost * of Major Intersections
Signal Head Improvements

Intersection	3 Section Signal	4 Section Signal	Total Signal Sections	Sections (\$)	Backplates (\$)	$\begin{gathered} \text { LED } \\ (\$) \end{gathered}$	Total
SMG @ Capital	7	--	21	\$2769.27	\$396.90	\$2830.66	\$5996.83
SMG @ Harrisburg	7	1	25	\$3296.75	\$461.09	\$3378.97	\$7136.81
SMG @ Canal	7	--	21	\$2769.27	\$396.90	\$2830.66	\$5996.83
SMG @ Navigation	7	1	25	\$3296.75	\$461.09	\$3378.97	\$7136.81
Wayside @Capital	7	--	21	\$2769.27	\$396.90	\$2830.66	\$5996.83
Wayside @ Harrisburg	7	1	25	\$3296.75	\$461.09	\$3378.97	\$7136.81
Wayside @ Canal	7	---	21	\$2769.27	\$369.90	\$2830.97	\$5996.83
Wayside @ Navigation	7	1	25	\$3296.75	\$461.09	\$3378.97	\$7136.81
Total	56	4	184	\$24,264.08	\$3431.96	\$24,838.52	\$52,534.5t

*Source: TxDOT Project Bid Prices, 2003

Table 23

Estimated Cost * of Major Intersection

Striping/Pavement Marking Improvements per Approach

Side Street	Arrows	Cat Tracks	Solid Striping 100^{\prime} out from Intersection	Skip Striping 100^{\prime} out from Intersection	Stripe Prep (\$)	Cost Arrow (\$)	Arrow Prep (\$)	Cost Solid Paint (\$)	Skip Prep (\$)	Cost Skip Paint (\$)	Total (\$)
40 Foot Wide Intersection	4	--	200	40	\$95.56	\$179.08	\$45.41	\$20.20	45.408	5.542	\$391.20
60 Foot Wide Intersection	5	---	300	40	\$119.45	\$223.85	\$68.11	\$30.30	68.112	5.542	\$515.37
Main Street		--	---	---	--	--	--	---	--	-	---
SMG	4	100	---	---	\$95.56	\$179.08	--	--	\$22.77	\$13.86	\$311.27
Wayside	4	100	---	---	\$95.56	\$179.08	---	---	\$22.77	\$13.86	\$311.27
Total	17	200	---	---	\$406.13	\$761.09	---	---	\$159.06	\$38.794	\$1365.07

*Source: TxDOT Project Bid Prices, 2003

Table 24
Summary of Estimated Costs * for Striping/Marking
Improvements by Major Intersection

Intersection	Cost per Intersection (\$)
Wayside @ Navigation	$\$ 826.63$
Wayside @ Canal	$\$ 702.46$
Wayside @ Harrisburg	$\$ 826.63$
Wayside @ Capital	$\$ 702.46$
SMG @ Navigation	$\$ 826.63$
SMG @ Canal	$\$ 702.46$
SMG @ Harrisburg	$\$ 826.63$
SMG @ Capital	$\$ 702.46$
Total	$\$ 6116.38$

*Source: TxDOT Project Bid Prices, 2003

Table 25
Estimated Costs * for Installation
Of Parking Restriction Signs

Cost Per Sign	$\mathbf{\$ 1 8 9 . 2 7}$
\# of Blocks	$\mathbf{8 1}$
Signs per Block	$\mathbf{3}$
Total	$\$ 45,992.61$

*Source: TxDOT Project Bid Prices, 2003

Chapter 11 - Prioritize Improvements by Preliminary BenefitCost

Data Resources

The following resource documents were utilized for benefit-cost calculations to establish funding priorities for the previously designated safety improvement countermeasures to be considered for implementation within the East End Study Area:

1. McFarland, William F, et al "Benefit-Cost Analysis for Evaluating Safety Improvement Projects," Texas Transportation Institute, Unpublished report 1484, 2001
2. Griffin, Lindsay I. "Procedures for Evaluating Highway Safety Projects," Federal Highway Administration, Report FHWA-RD-08-033, U.S. Department of Transportation, 1997
3. Texas Department of Transportation, "Chapter 2 - Hazard Elimination Program - Safety Improvement Index," Traffic Operations Manual, 1999

Safety Improvement Index (SII) Analysis

As part of the Federal Hazard Elimination and Safety (HES) Program, The Texas Department of Transportation (TxDOT) has developed and utilizes a formula which assesses the attributes of a safety improvement project and converts it to an index/ratio by which each project can be ranked or prioritized in order of importance. This formula is called the Safety Improvement Index (SII). In its most basic form, it is a benefit-cost ratio that computes the ratio of potential reduction in crash costs to the cost of constructing improvements. This formulated value is weighted heavily on the percentage of expected reduction in prior improvement crashes. Thus an SII greater than or equal to 1.0 is considered to be cost effective, but the ratio is not designed to measure the effectiveness of individual projects, rather, it is a method by which many projects can be compared using the same set of criteria. By way of this comparison, a prioritization list of improvement projects is formed.

With this prioritized list, the projects are funded beginning with the most important pruject, and each subsequent safety improvement project is then funded individually and sequentially. The Safety Improvement Index formula is defined as follows:

$$
\begin{align*}
& S=\frac{R\left(C_{f} F+C_{i} I+C_{p} P\right)}{Y}-M, \quad Q=\left(\frac{\frac{A_{a}-A_{b}}{A_{b}}}{L}\right) S \tag{11-1}\\
& B=\frac{S+1 / 2 Q}{1.08}+\sum_{i=2}^{L}\left[\frac{(S+1 / 2 Q)+(i-1) Q}{(1.08)^{1}}\right], \mathrm{L}=\text { Project Service Life } \tag{11-2}\\
& S I I=\frac{B}{C}, \mathrm{~B}=\text { Present Worth of Project Benefits over Service Life } \tag{11-3}\\
& \quad \mathrm{C}=\text { Initial Cost of Project }
\end{align*}
$$

Where:
$S=$ annual savings in crash cost (equal to crash cost savings per year less annual maintenance costs)
$R=$ percentage reduction factor
$F=$ number of fatal and/or incapacitating injury crashes
$C_{i}=$ cost of fatal and/or incapacitating injury crash
$I=$ number of non-incapacitating and/or possible injury crashes
$C_{p}=$ cost of PDO crashes
$Y=$ number of years of crash data
$M=$ change in annual maintenance costs for the proposed project relative to the existing situation
$Q=$ annual change in crash cost savings
$A_{a}=$ projected average annual ADT at the end of the project service life
$A_{b}=$ average annual ADT during the year before the project is implemented

The SII formula is the best tool to evaluate the benefit-cost worth and relative priority un ule previously discussed and recommended safety improvement countermeasures for the East End Study Area. Table 26 indicates the data input for SII calculations by safety improvement project.

Table 27 gives the priority ranking of safety improvement projects recommended for the East End Study Area by calculated Safety Improvement Index (SII). As can be seen, both the mainlane and intersection improvements on US 90 Alternate are highly cost effective, as well as the Stop-controlled, minor street intersection recommendations. The recommended countermeasures associated with driveway access control for the 6800 Block of Harrisburg Avenue is marginally cost beneficial and well below the SII ranking of the other projects. The cost estimate related to the study and improvements to driveway access at this location is also questionable.

Table 26
Safety Improvement Project Input Data for TTI

Safety Improvement Project	\# $\mathrm{A}+\mathrm{K}$ Crashes	\# $B+C$ Crashes	\# PDO Crashes	Years of Crash Data	Initial Cost of Project $(\$ 1000)$	Main Cost of Project $(\$ 1000)$	Project Service Life	ADT Before Project (1000)	ADT After Project (1000)	Crash Reduction Factor	Present Worth of Project (\$1000)
US 90 Alternate Main Lanes Striping/RPM	2	3	14	1	8	0	3	30	31.2	. 30	466.7
US 90 Alternate Intersections Signal/Striping	2	18	14	1	60	12	10	40	42	. 25	1641.6
Stopcontrolled Intersections Parking Restrictions	0	28	28	1	46	4	6	5	5.25	. 25	714.9
6800 Harrisburg Driveway Access Controls	0	3	7	1	50	5	10	18	18.9	. 10	50.83

Table 27
Safety Improvement Index
Priority Rankings

	Recommended Safety Improvement	Safety Improvement Index (SII)
い	US 90 Alternate Mainlanes Striping/RPM	58.34
	US 90 Alternate Intersections Signals/Striping	27.53
	Stop-controlled Intersections Parking Restrictions	15.54
	6800 Harrisburg Driveway Access Controls	1.02

Chapter 12 - Conclusions/Recommendations

From Chapter 11, utilizing the Safety Improvement Index (SII) as a measure of costeffectiveness, the recommended countermeasures of striping and raised pavement marker application on US 90 Alternate mainlanes are indicated to hold potential to be highly beneficial and a first priority for funding. The US 90 Alternate intersection safety improvements recommended are also highly cost-effective and should be funded as a second priority. While also cost-beneficial, the recommended safety improvements associated with parking restrictions to improve sight distance at other Stop-controlled intersections within the East End Study Area will be controversial and potentially the most difficult politically to implement. The last recommended safety improvement countermeasure involving re-designed and constructed driveway access in the 6800 Block of Harrisburg is marginally beneficial at the most conservative of cost estimates.

A meeting was held on October 28, 2003 between TTI staff and representatives from H GAC, TxDOT, and the City of Houston to discuss these study conclusions and recommendations. The total initial estimated cost for implementation of all recommended engineering safety improvements within the East End Study Area is approximately $\$ 160,000$ to reduce annual vehicle collisions by approximately 30 crashes representing an estimated annual cost savings of over $\$ 550,000$. Again, it should be emphasized that these are preventable crashes susceptible to remediation by engineering countermeasures. The preponderance of crashes (and pedestrian/bicycle conflicts) occurring within the East End are behaviorally influenced by speed, alcohol, parental supervision, etc. Remediation or reduction in the frequency of these crashes is dependent and influenced by both increased and diligent law enforcement and/or continued and increased school and community traffic safety education programs.

Other observed and recognized minor safety improvements which could not be related to a specific pattern of crashes were discussed with City of Houston staff. These improvements involved mostly maintenance of existing traffic control devices; i.e., selected crosswalks, and may have or will be addressed through existing programs and/or projects.

Appendices

Appendix A

Sidewalks often, but not always, provided.

Potholes, rutting, narrow lane widths typical on Harrisburg. May contribute to side-swipe crashes.

Limited pedestrian width and setback (on Harrisburg)

Metro stop just off corner. Pedestrians observed crossing here rather than intersection ($74^{\text {th }} \&$ Harrisburg)

Numerous large trucks (presumably servicing industrial land use areas). Tight radius corners at most intersections may be problem for these vehicles, but also slows entry speed, potentially aiding pedestrian movement.

Near Edna M Carillo Elementary School: Pedestrian gate provided (presumably to provide access to school from residential area behind school).

Harrisburg/Wayside/Garcia extension to South

Wayside mid-block cross walk. Note heavy vehicles.

Signal at Harrisburg. Faint/faded lane markings.

Vegetation obscures some signs - here, a speed limit sign preceding a crosswalk

品
Southern extension of Wayside/Garcia. Effective separation between pedestrian and vehicle traffic.

Crosswalk indicating pedestrian/bicycle facility intersection with Wayside

Pedestrian/bicycle facility signing

Some students use crosswalks \& sidewalks - many do not.

Student use of crosswalks appears more frequent on major streets (e.g., Sgt. Garcia).

Pedestrian gate from school grounds to mid-block on Sgt Garcia

Open residential property gates on Ave I obstruct pedestrian use of sidewalks

Bicycle and push cart vendors common around school and elsewhere in area

Potentially hazardous sign placement

Pedestrian signal head obscured by pole from some angles

Appendix B

Appendix B

Major Intersection Crash Summaries

Crash Data - Hard Copy (11/01 - 2/03)

Numbers in parentheses represent factor codes from accident reports [ex: (15)]
Demographics include all parties included in accidents (not the surname of vehicle)
FSGI are those who fail to stop and give insurance (hit and runs)

Intersection 1:
Navigation/Wayside
10 Total Noted Crashes
All Intersection/intersection related
Demographics: White $=10$;Hispanic $=6$;other $=2$
Male $=15 ;$ Female $=3$
FSGI=2
All auto crashes
times: 6 day/4 night
$5(15,16)$ ran red light one incident on wet road surface
2 (4) changed lanes when unsafe
1 (22) failed to control speed-rear end
1 (64) turned improperly-wide right
1 (65) turned improperly-wrong lane

Intersection 2:

Navigation/ S_Sgt Macario Garcia
6 Total Noted Crashes
All Intersection/intersection related
Demographics: White $=6$;Hispanic $=5$
Male $=8$;Female $=3$
FSGI=1
5 auto/ 1 cyclist
times: 4 day/2 night
3 (65) turned improperly-wrong lane
1 (15) ran red light
1 (20) driver inattention

1 cyclist involved
1 (22) failed to control speed-rear end

Intersection 3:

Canal/Wayside
11 Total Noted Crashes
All Intersection/intersection related
Demographics: White $=19$;Hispanic=4
Male=22;Female=1
FSGI=2
All auto crashes
Times: 7 day/4 night
4 (15) ran red light
1 night/rain/wet road surface
2 (65) turned improperly-wrong lane
2 (74) signal lights not working; conflicting statements 1 night/rain/wet road surface
1 (23) failed to drive in a single lane night/rain/wet road surface
1 (37) failed to yield row-turning left night/clear/wet road surface
1 unknown
Intersection 4:
Canal/S_Sgt Macario Garcia
12 Total Noted Crashes
All Intersection/intersection related
Demographics: White $=15$;Hispanic=9
Male $=14 ;$ Female $=10$
FSGI=1
11 auto/ 1 cyclist crashes
Times: 10 day/2 night
4 (15) ran red light
2 (22) failed to control speed
$1 \mathrm{rain} /$ wet road surface
2 (4) changed lane when unsafe
1 night
1 (65) turned improperly-wrong lane
1 (74) cyclist failed to yield row
2 unknowns
1 night
Intersection 5:
Capitol/Wayside

6 Total Noted Crashes
All Intersection/intersection related
Demographics: White $=4 ;$ Hispanic $=7 ;$ Black $=2$
Male $=8$;Female $=5$
FSGI=1
All auto crashes
Times: all are daytimes
$5(15,16)$ ran red light
2 rain/wet road surface
1 rain
1 unknown
rain/wet road surface

Appendix C

Appendix C
 Street Corridor Crash Summaries Crash Data - Hard Copy (11/01-2/03)

Numbers in parentheses represent factor codes from accident reports [ex: (15)] Demographics include all parties included in accidents (not the surname of vehicle) FSGI are those who fail to stop and give insurance (hit and runs)
Sideswipes: (sd)=same direction; (od)=opposite direction

Ave B
1 noted crash
Corridor related-parked car
6500 blk
Demographics: 1 white male
Daytime
(3) backed without safety; angled

Ave $B / 65^{\text {th }}$
1 noted crash
Intersection related-fixed object
FSGI
Daytime
Ave C
1 noted crash
Corridor related-auto crash
6900 blk
Demographics: 1 white male
FSGI
Daytime
(3) backed without safety; angled

Ave C/Wayside
3 noted crashes
Intersection related-auto crashes
Demographics: White $=3$;Hispanic $=3$;Male $=5$;Female $=1$
3 daytimes
2 (35) failed to yield row-stop sign; 1 sideswipe (sd) $/ 1$ angled 1 rain/wet road
$1(35,66)$ failed to yield row-stop sign, turned when unsafe; angled
Ace C/S_Sgt Macario Garcia
2 noted crashes
Intersection related-auto crashes

Demographics: 2 Hispanic males
2 FSGI
2 nights
2 (35) failed to yield row-stop sign; angled
1 rain/wet road
Ave E
1 noted crash
Corridor related-auto crash
6700 blk
Demographics: White $=2$; Male $=1 ;$ Female $=1$
Daytime
(49) improper start from parked; angled

Ave E/Cesar Chavez ($67^{\text {th }}$)
1 noted crash
Intersection related-auto crash
Demographics: Hispanic=1; Black=1; Males=2
Daytime
(35) failed to yield row-stop sign; angled

Ave E/S_Sgt Macario Garcia
2 noted crashes
Intersection related-auto crashes
Demographics: White $=4 ;$ Male $=3 ;$ Female $=1$
1 day/1 night
1 (23) failed to drive in single lane; sideswipe (sd)
1 wet road
1 (4) changed lane when unsafe; sideswipe (sd)
Ave F
6 noted crashes
Corridor related- 1 auto, 1 pedestrian, 4 parked cars 6600, 6700, 7000 blk
Demographics: White=2; Hispanic=3; Male=5; Female=1
2 FSGI
4 days/2 nights
3 (3) backed without safety; angled
2 (23) failed to drive in single lane; 2 rear ends
1 (20) driver inattentive; pedestrian
Ave F/Wayside
2 noted crashes
Intersection related-1 auto, 1 pedestrian crash
Demographics: White=1; Hispanic=1; Black=2; Males=4
Daytime
1(35) failed to yield row-stop sign; angled

1 unknown; pedestrian
Ave F/S_Sgt Macario Garcia
2 noted crashes
Intersection related-1 auto, 1 cyclist
Demographics: Hispanic=3; Black=1; Male=2; Female=2
Daytime
$1(20,23)$ driver inattentive, failed to drive in single lane; sideswipe (sd)
1 unknown; cyclist
Ave H
1 noted crash
Corridor related- parked car
Demographics: 1 White male
Daytime
(23) failed to drive in single lane-sideswipe (sd)

Ave H/67 ${ }^{\text {th }}$
1 noted crash
Intersection related-parked car
Demographics: 2 Hispanic males
Night
(23) failed to drive in single lane; sideswipes (sd)

Ave H/70 th
1 noted crash
Intersection related-auto crash
Demographics: 2 white females
Night
(35) failed to yield row-stop sign; angled 1 wet road

Ave H/Wooding
1 noted crash
Intersection related-fixed object
Demographics: Hispanic Male
Daytime
$(16,22)$ disregard stop sign or light/failed to control speed

Ave H/S_Sgt Macario Garcia
2 noted crashes
Intersection related-auto crashes
Demographics: White=2; Hispanic=2;Males=4
1 FSGI
1 day/1night

1 (35) failed to yield row-stop sign; angled
1 (64) turned improperly -wide right; angled
Ave I
2 noted crashes
Corridor related-parked cars
6500, 6700 blk
Demographics: 1 Hispanic Male
1 FSGI
1 day/1 night
1 (22) failed to control speed; head-on
1 (23) failed to drive in single lane; head-on
Ave $1 / 66^{\text {th }}$
2 noted crashes
Intersection related-parked cars
Demographics: 1 Hispanic Male
2 FSGI
1 day/1 night
1 (3) backed without safety; angled
1 unknown; angled
Ave I/Cesar Chavez ($67^{\text {th }}$)
2 noted crashes
Intersection related-1 parked car, 1 auto crash
Demographics: Hispanic=2; Black=1; Male=2; Female=1
1 day/1 night
1 (35) failed to yield row-stop sign; angled
$1 \mathrm{rain} / \mathrm{wet}$ road
1 (3) backed without safety; angled
Ave I/Wayside
2 noted crashes
Intersection related-auto crashes
Demographics: White=2; Hispanic=2; Male=3; Female=1
Daytimes
1 (65) turned improperly -wrong lane; sideswipe (sd)/ angled
1 (4) changed lane when unsafe; sideswipe (sd)
Ave I/S_Sgt Macario Garcia
1 noted crash
Intersection related-auto crash
Demographics: 1 White Male
1 FSGI
Night
(4) changed lane when unsafe; sideswipe (sd)

$1 \mathrm{rain} /$ wet road

Ave J
1 noted crash
Corridor related- parked car
Demographics: 2 White males
1 FSGI
Night
$(22,23)$ failed to control speed/failed to drive in single lane; sideswipe (sd)
Ave J/Wayside
1 noted crash
Intersection related-auto crash
Demographics: 2 Hispanic Males
Daytime
(65) turned improperly -wrong lane; angled

Ave J/S_Sgt Macario Garcia
1 noted crash
Intersection related-auto crash
Demographics: Hispanic=2; Male=1; Female=1
Daytime
(65) turned improperly -wrong lane; sideswipe (sd)

Ave K
1 noted crash
Corridor related-auto crash
Demographics: 2 Hispanic Males
Night
(3) backed without safety; angled

Ave K/S_Sgt Macario Garcia
2 noted crashes
Intersection related-auto crashes
Demographics: White=2; Hispanic=2; Male=1; Female=3
1 day/1 night
1 (35) failed to yield row-stop sign; angled
1 (4) changed lane when unsafe; sideswipe (sd)
Ave L
3 noted crashes
Corridor related-parked cars
6600, 6700 blk
Demographics: 1 Hispanic Male; 1 White Female
1 FSGI
1 day/2 nights

1 (23) failed to drive in single lane; sideswipe (od)/ head-on $1 \mathrm{rain} /$ wet roads
1 (22) failed to control speed; sideswipe (sd) 1 rain/wet roads
1 (3) backed without safety; angled

Ave L/Wayside

3 noted crashes
Intersection related-auto crashes
Demographics: White=2; Hispanic=4; Male=2; Female=4
1 FSGI
1 day/2 nights
$1(3,20)$ backed without safety/ driver inattentive; angled
1 (16) disregard for stop sign or light; angled
1 (3) backed without safety; rear-end
Ave N
3 noted crashes
Corridor related-1 auto, 1 parked car, 1 fixed object 6800-7000 blk
Demographics: White=2; Hispanic=2; Male=3; Female=1 2 days/ 1 night
1 (26) failed to pass to left safely; angled
$1(20,22)$ driver inattentive/ failed to control speed; head-on parked car
1 (23) failed to drive in single lane

Ave N/Wayside
1 noted crash
Intersection related-auto crash
Demographics: Hispanic=2; Male=1; Female=1
1 FSGI
Daytime
(16) disregard for stop sign or signal; angled

Ave O
4 noted crashes
Corridor related- 1 pedestrian, 3 parked cars
6600, 6800-6900 blk
Demographics: White $=1$; Hispanic $=1 ;$ Male $=2$
3 FSGI
1 day/3 nights
1 (23) failed to drive in single lane
pedestrian accident
1 (3) backed without safety; angled

2 (22) failed to control speed; 2 rear-ends
Ave O/S_Sgt Macario Garcia
2 noted crashes
Intersection related-auto crashes
Demographics: 4 Hispanic Males
1 day/1 night
1 (35) failed to yield row-stop sign; angled
$1(20,23)$ driver inattentive/ failed to drive in single lane; sideswipe (sd)
Ave O/Wayside
1 noted crash
Intersection related-auto crash
Demographics: 2 Hispanic Males
Night
(4) changed lane when unsafe; sideswipe (sd)

Ave P
3 noted crashes
Corridor related-parked cars
6600, 6800-6900 blk
3 FSGI
3 days
2 (22) failed to control speed; 1 sideswiped (sd)
1 (3) backed without safety; angled
Ave P/71 ${ }^{\text {st }}$
1 noted crash
Intersection related-fixed object
Demographics: 1 White Male
Night
(22) failed to control speed

Ave Q
2 noted crashes
Corridor related-1 parked car, 1 pedestrian 6642, 7000 blk
Demographics: 1 White Female; 1 Hispanic Male
1 FSGI
2 nights
1 (3) backed without safety; rear-end
1 (23) failed to drive in single lane pedestrian accident

Ave Q/Wayside

3 noted crashes
Intersection related-2 auto, 1 fixed object
Demographics: White=3; Hispanic=2; Male=3; Female=2
3 days
$1(35,48)$ failed to yield row-stop sign/impaired visibility; angled
$1(20,22)$ driver inattentive/failed to control speed fixed object
1 (35) failed to yield row-stop sign; angled wet road

Ave Q/S_Sgt Macario Garcia
1 noted crash
Intersection related-auto crash
Demographics: 1 White Female
1 FSGI
Night
(35) failed to yield row-stop sign; angled

Ave R
4 noted crashes
Corridor related-2 auto, 1 parked car 6790, 6800 blk
Demographics: White $=2$; Hispanic=2: Male=4;
3 FSGI
2 day/1 night
2 (22) failed to control speed; 2 rear-ends 1 parked car
1 (74) unable to determine; head-on
1 (3) backed without safety; angled
Ave R/Wayside
3 noted crashes
Intersection related-auto crashes
Demographics: White=3; Hispanic=2; Black=1; Male=4; Female=2
1 day/2 nights
1 (65) turned improperly -wrong lane; sideswipe (sd)
1 (37) failed to yield row-turning left; angled
1 (15) disregard stop and go signal; angled
Ave R/S_Sgt Macario Garcia
2 noted crashes
Intersection related-auto crashes
Demographics: White=3; Hispanic=1; Male=2; Female=2
2 days
1 (16) disregard stop sign or light; angled

1 (22) failed to control speed; rear-end

Ave S
1 noted crash
Corridor related-auto crash 6900 blk
Demographics: 1 Black Male; 1 Hispanic Female
Daytime
(3) backed without safety; rear-end

Ave S/Wayside
2 noted crashes
Intersection related-auto crashes
Demographics: White=1; Hispanic=3; Male=2; Female=2
2 days
1 (37) failed to yield row-turning left; angled rain/wet road
$1(55,74)$ parked in traffic lane/ mechanical failure; angled
Ave T
4 noted crashes
Corridor related-3 parked cars, 1 flying object
6600, 6800 blk
Demographics: 1 Hispanic Male
3 FSGI
2 days/2 nights
1 (22) failed to control speed; rear-end
1 unknown; rear-end
1 (74) other factors; sideswipe
1 (74) flying basketball
Ave U/Wayside
2 noted crashes
Intersection related-auto crashes
Demographics: White $=1$; Hispanic $=1$; Black $=2$; Male $=1$; Female $=3$
2 days
1 (65) turned improperly -wrong lane; angled rain/wet road
1 (4) changed lane when unsafe; sideswipe (sd)
Ave U
1 noted crash
Corridor related-auto crash
6800 blk
Demographics: 2 Black Males

Daytime
(34) failed to yield row-private drive; angled

Capitol

4 noted crashes
Corridor related-1 fixed object, 1 pedestrian, 2 auto crashes
6600-6900 blk
Demographics: White=2; Hispanic=2; Black=2; Male=5; Female=1
1 FSGI
2 days/2 nights
$1(20,23)$ driver inattentive/failed to drive in single lane fixed object
$1(28,65)$ failed to signal or gave wrong signal/turned improperly-wrong lane; sideswipe (sd)
1 (65) turned improperly -wrong lane; sideswipe (sd)
1 (59) pedestrian failed to yield row to vehicle

Capitol/70 ${ }^{\text {th }}$
3 noted crashes
Intersection related-auto crashes
Demographics: White=3; Hispanic=2: Male=2: Female=3
3 days
1 (66) turned when unsafe; angled wet road
1 (29) failed to stop at proper place; angled
1 (57) passed in no passing zone; angled
Canal
5 noted crashes
Corridor related- 2 parked cars, 3 auto crashes
6500, 6800, 7000 blk
Demographics: White=6; Hispanic=2; Male=4; Female=4
1 FSGI
2 days/3 nights
1 (20) driver inattentive; rear-end
4 (22) failed to control speed; rear-ends
$2 \mathrm{rain} /$ wet road
Canal/ $66^{\text {th }}$
2 noted crashes
Intersection related-auto crashes
Demographics: 2 Hispanic Females; 1 White Male
1 FSGI
1 day/1 night
$1(35,74)$ failed to yield row-stop sign/failed to yield row to vehicle on
the right; angled
1 (35) failed to yield row-stop sign; angled

```
***Harrisburg***
    Corridor Related
        6600-6700 blk
            3 noted crashes-1 fixed object, 2 auto crashes
            Demographics: White=2; Hispanic=2; Male=3; Female=1
            1 FSGI
            2 days/1 night
            2 (4) changed lanes when unsafe; sideswipes (sd)
            1(22) failed to control speed
                fixed object
6 8 0 0 ~ b l k
            5 noted crashes-auto crashes
            Demographics: White=7; Hispanic=4; Male=6; Female=5
            3 days/2 nights
            1 (4) changed lanes when unsafe; sideswipe (sd)
                rain/wet road
            1 (3) backed without safety; rear-end
            2 (22) failed to control speed;
            angled -rain/wet road
            rear-end
                            1 (34) failed to yield row-private drive; angled
6900 blk
    11 noted crashes-auto crashes
    Demographics: White=10; Hispanic=9; Male=11; Female=8
    5 FSGI
    days/5 nights
    4(22) failed to control speed; rear-ends
        2 rain/wet roads
    2 (37) failed to yield row-turning left; angled
    1(22,27) failed to control speed/failed to pass to right safely; angled
    1 (33) failed to yield row-open intersection; angled
    1 (65) turned improperly -wrong lane; angled
        rain/wet road
    1 (23) failed to drive in single lane; sideswipe (sd)
    l (29) failed to stop at proper place; angled
7000 blk
    3 noted crashes-1 pedestrian, 2 auto crashes
    Demographics: White=3; Hispanic=4; Male=5; Female=2
    3 days
    2 (22) failed to control speed;
        angled-1 motorcycle
        rear-end
```

1 (59) pedestrian failed to yield row to vehicle rain/wet road

Harrisburg/Cesar Chavez($67^{\text {th }}$)
1 noted crash
Intersection related-auto crash
Demographics: White $=2$; Male $=1$; Female $=1$
Daytime
(22) failed to control speed; rear-end

Harrisburg/S_Sgt Macario Garcia
4 noted crashes
Intersection related-auto crashes
Demographics: White=7; Male=4; Female=3
1 FSGI
1 day/3 nights
2 (22) failed to control speed; rear-ends
2 (15) disregard stop and go signal; angled
Harrisburg/Wayside
1 noted crash
Intersection related-auto crash
Demographics: 2 Hispanic Males
Night
Unknown factors; angled
Harrisburg/ $65^{\text {th }}$
1 noted crash
Intersection related-auto crash
Demographics: 3 White Males
Daytime
(35) failed to yield row-stop sign; angled

Navigation
4 noted crashes
Corridor related- 3 auto, 1 parked car
$6600,6800,7000 \mathrm{blk}$
Demographics: White $=3$; Hispanic $=4$; Male $=4$; Female $=3$
1 FSGI
3 days/ 1 night
1 (23) failed to drive in single lane; sideswipe (sd)
1 (4) changed lanes when unsafe; angled
1 (22) failed to control speed; rear-end
1 (55) parked in traffic lane; sideswipe (sd) parked car

Navigation/Maltby

1 noted crash
Intersection related-auto crash
Demographics: 2 Hispanic Males
Daytime
(35) failed to yield row-stop sign; angled

Navigation/Cesar Chavez($67^{\text {th }}$)
1 noted crash
Intersection related-auto crash
Demographics: 2 White Females; 1 Black Male
Night
(37) failed to yield row-turning left; angled rain/wet road

S_Sgt Macario Garcia

8 noted crashes
Corridor related- 1 cyclist, 7 auto crashes
$600,900-1000,1300,1500-1600 \mathrm{blk}$
Demographics: White=7; Hispanic=7; Male=8; Female=6
3 FSGI
5 days/3 nights
2 (23) failed to drive in single lane; sideswipe (sd)
$1(22,44)$ failed to control speed/followed too closely; rear-end
1 (22) failed to control speed; rear-end
2 (4) changed lanes when unsafe; sideswipe (sd)
1 (16) disregard stop sign or light; angled
1 (34) failed to yield row-private drive cyclist accident-muddy road

Sherman
3 noted crashes
Corridor related-1 fixed object, 2 parked car 6700 blk
Demographics: 1 Hispanic Male
2 FSGI
2 days/1night
1 (23) failed to drive in single lane fixed object-wet road
1 (22) failed to control speed; sideswipe (sd) parked car
1 unknown factor; sideswipe (sd)
Sherman/Cesar Chavez(67 $\left.{ }^{\text {th }}\right)$
1 noted crash
Intersection related-auto crash
Demographics: 2 Hispanic Females

Night
$(35,20)$ failed to yield row-stop sign/driver inattentive; angled
Sherman/Wayside
2 noted crashes
Intersection related-auto crashes
Demographics: Hispanic=2; Black=1; Male=2; Female=1
1 FSGI
1 day/1 night
1 (16) diregard stop sign or light; angled rain/wet road
1 (65) turned improperly -wrong lane; angled
Sherman/S_Sgt Macario Garcia
2 noted crashes
Intersection related-auto crashes
Demographics: White=2; Hispanic=2; Males=4
2 days
1 (3) backed without safety; rear-end
$1(20,23)$ driver inattentive/failed to drive in single lane; sideswipe (sd)

Terminal
1 noted crash
Corridor related-parked car
1100 blk
Demographics: 1 White Female
Daytime
(3) backed without safety; angled
rain/wet road
Terminal/Ave Q
1 noted crash
Intersection related-fixed object
Demographics: 1 White Male
Daytime
(22) failed to control speed

Wayside
12 noted crashes
Corridor related-10 auto crashes, 2 fixed objects
300, 600-700, 900-1000, 1200-1300, 1900-2200 blk
Demographics: White=9; Hispanic=10; Black=2; Asian=1;
Male=17; Female=5
4 FSGI
10 days/2 nights

3 (22) failed to control speed; rear-ends 1 wet road $1 \mathrm{rain} /$ wet road
4 (4) changed lanes when unsafe; angled/sideswipes (sd)
1 (34) failed to yield row-private drive; angled
$1(22,23)$ failed to control speed/failed to drive in single lane fixed object
1 (16) disregard stop sign or light; angled
1 (71) wrong way-one way road; angled
$1(22,43)$ failed to control speed/fleeing or evading police fixed object

Wayside/Polk
1 noted crash
Intersection related-auto crash
Demographics: 1 Hispanic Female, 1 Black Male
Daytime
$(20,22)$ driver inattentive/failed to control speed; rear-end/angled

Appendix D

Table D-1. Traffic Volume Data from Texas Transportation Institute.

Hardfile \#	Location Description	Keymap	Start Date	Days1	Days2	Weekday	Saturday	Sunday
3957	Navigation EB -- West of Engleke	494-N	11/11/2002	T		4443	0	0
3958	Commerce WB -- near Roberts	494-N	11/11/2002	T		490	0	0
3959	Sampson SB -- South of Rusk	494-S	11/11/2002	T		4883	0	0
3999	York NB -- South of Rusk	494-S	1/24/2003	SU	M	3250	2213	1352
3960	Lockwood SB -- South of Harrisburg	494-T	11/11/2002	T		9764	0	0
4000	Harrisburg WB -- West of 65th	494-U	1/24/2003	SU	M	6644	6988	5277
0	Telephone	494-X				0	0	0
3963	Lawndale EB -- West of Collier	494-X	11/13/2002	HFSU		2682	2527	1821
0	Griggs	534-K				0	0	0
0	Long	534-K				0	0	0
0	Lawndale near Griggs	535-A				0	0	0
0	Lawndale near San Antonio	535-A				0	0	0
0	Broadway near Galveston Rd.	535-F				0	0	0
0	Howard near Galveston Rd.	535-R				0	0	0
3956	Navigation WB -- East of Engleke	494-N	11/11/2002	T		4618	0	0
3981	Commerce EB -- near Roberts	494-N	12/13/2002	SU	MT	753	508	327
3982	Lockwood NB -- South of RR	494-T	12/13/2002	SU	MT	8407	6515	4829
3961	Harrisburg EB -- West of 65th	494-U	11/11/2002	T		6853	0	0
3984	Wayside SB -- North of Ave C	494-V	12/13/2002	SU	MT	15787	15976	12756
3266	Wayside NB -- South of l-10 East	495-E	9/22/1998	WHFSU		19743	16970	13698
3265	Wayside SB -- North of I-10 East	495-E	9/22/1998	WHFSU		13530	10024	8094
3983	Sgt Macario Garcia NB -- North of Harrisburg	494-V	2/13/2002	SU	MT	17146	16702	13995

Table D-2. Traffic Volume Data from TxDOT.

Sta Loc	Func Class	Posted96	Posted2001	Flag	County
HP5280	1	7740	7590	1	HAR
HP6270	1	6890	5810	1	HAR
HP5137	1	3890	3470	1	HAR
U2246	0	2010	2130	1	HAR
U2243	1	13810	16740	1	HAR
U2244	1	5640	3500	1	HAR
U2317	1	6880	0	0	HAR
U2245	0	450	590	1	HAR
U2312	0	1100	1900	1	HAR
U2313	0	1880	1570	1	HAR
U2314	1	4380	4500	1	HAR
U2315	1	14990	15690	1	HAR
U2319	1	12870	13600	1	HAR
U2247	1	15610	15510	1	HAR
U2248	1	2190	2250	1	HAR
U2249A	0	400	0	0	HAR
U2311	0	1120	1260	1	HAR
U2350	0	16940	0	0	HAR
U2318	1	34840	34950	1	HAR
U2319	1	12870	13600	1	HAR
U2331	0	1800	1350	1	HAR
U2316	1	29630	30750	1	HAR
U2332	1	15520	17410	1	HAR
U2333	1	9050	8600	1	HAR
U2330	0	1200	1440	1	HAR
U2333A	0	310	0	0	HAR
U2309	1	33880	35370	1	HAR

Appendix E

Table E-1. City of Houston Devices.

Major St	Minor St	Intersection	Dev ID	St Control	Inst Date	Dir1	Year
65th	Ave C	65th \& Ave C	1	Ave C	9/10/92		1992
65th	Ave F	65th \& Ave F	1	Ave F	9/19/80	WB	1980
65th	Canal	65th \& Canal	1	65th	7/10/57		1957
65th	Harrisburg	65th \& Harrisburg	1	65th	10/23/53		1953
65th	Sherman	65th \& Sherman	1	4 way stop	10/23/00		2000
66th	Ave C	66th \& Ave C	1	Ave C	6/3/55		1955
66th	Ave F	66th \& Ave F	1	Ave F	5/2/60		1960
66th	Ave I	66th \& Ave I	1	Ave I	3/21/85		1985
66th	Ave J	66th \& Ave J	1	Ave J	3/13/85		1985
66th	Ave K	66th \& Ave K	1	66th	9/28/98	NB	1998
66th	Canal	66th \& Canal	1	66th	3/5/51		1951
66th	Capitol	66th \& Capitol	1	Capitol	2/16/66	WB	1966
66th	Harrisburg	66th \& Harrisburg	1	66th	4/2/51		1951
66th	Sherman	66th \& Sherman	1	4 way stop	10/6/97		1997
66th	Texas	66th \& Texas	1	Texas	2/16/66		1966
67th	Ave F	67th \& Ave F	1	Ave F	10/9/59		1959
67 th	Ave H	67th \& Ave H	1	Ave H	10/9/59		1959
69th	Capitol	69th \& Capitol	1	S. 69th	12/19/62	NB	1962
70th	Ave C	70th \& Ave C	1	Ave C	4/27/51		1951
70th	Ave F	70th \& Ave F	1	Ave F	2/21/68		1968
70th	Ave H	70th \& Ave H	1	70th	7/17/61		1961
70th	Ave I	70th \& Ave I	1	70th	12/14/92	NB	1992
70th	Ave ${ }^{\text {a }}$	70th \& Ave N	1	Ave N	4/13/93		1993
70th	Ave O	70th \& Ave O	1	Ave O	9/15/60		1960
70th	Canal	70th \& Canal	1	70th	8/1/55		1955
70th	Capitol	70th \& Capitol	1	70th	9/29/47		1947
70th	Harrisburg	70th \& Harrisburg	1	70th	10/23/53		1953
70th	Navigation	70th \& Navigation	1	70th	10/9/47		1947
70th	Sherman	70th \& Sherman	1	70th	9/14/49		1949
71st	Ave C	71st \& Ave C	1	Ave C	8/5/87		1987
71st	Ave F	71st \& Ave F	1	Ave F	4/4/75		1975
71st	Ave J	71st \& Ave J	1	Ave J	3/24/70		1970
71st	Ave N	71st \& Ave N	1	Ave N	4/15/58		1958
71st	Ave O	71st \& Ave O	1	Ave O	8/2/82		1982
71st	Canal	71st \& Canal	1	71st	10/23/53		1953
71st	Capitol	71st \& Capitol	1	71st	4/14/72	SB	1972
71st	Harrisburg	71st \& Harrisburg	1	71st	10/23/53		1953
71st	Navigation	71st \& Navigation	1	71st	10/23/53		1953
71st	Sherman	71st \& Sherman	1	Sherman	3/21/58		1958
Ave B	67th	Ave B \& 67th	1	Ave B	12/21/99		1999
Ave B	Wayside	Ave B \& Wayside	1	Ave B	1/25/65	EB	1965
Ave B	Wayside	Ave B \& Wayside	1	Ave B	2/3/94		1994
Ave C	67th	Ave C \& 67th	1	Ave C	12/21/99		1999
Ave C	S_Sgt Mac	Ave C \& S_Sgt Macario Garcia	1	Ave C	6/27/81		1981
Ave C	Wayside	Ave C \& Wayside	1	Ave C	7/23/57		1957
Ave E	S_Sgt Mac	Ave E \& S_Sgt Macario Garcia	1	Ave B (ty)	2/3/94		1994
Ave F	S_Sgt Mac	Ave F \& S_Sgt Macario Garcia	1	Ave F	6/27/81		1981
Ave F	Wayside	Ave F \& Wayside	1	Ave F	7/23/57		1957
Ave H	S_Sgt Mac	Ave H \& S_Sgt Macario Garcia	1	Ave H	6/27/81		1981
Ave H	Maltby	Ave H \& Maltby	1	Ave H	8/19/76		1976
Ave H	Maltby	Ave H \& Maltby	1	Ave H	8/19/76		1976
Ave H	Wayside	Ave H \& Wayside	1	Ave H	7/23/57		1957
Avel	67th	Ave 1 \& 67th	1	Ave I	12/21/99		1999
Ave I	S_Sgt Mac	Ave I \& S_Sgt Macario Garcia	1	Ave I	6/27/81		1981

Table E-1. City of Houston Devices (continued).

Ave I	Wayside	Ave I \& Wayside	1	Ave I	7/23/57		1957
Ave J	67th	Ave J \& 67th	1	Ave J	12/11/99		1999
Ave J	S_Sgt Mac	Ave J \& S_Sgt Macario Garcia	1	Ave J	7/8/85	WB	1985
Ave J	S_Sgt Mac	Ave J \& S_Sgt Macario Garcia	1	Ave J	6/27/81		1981
Ave J	S_Sgt Mac	Ave J \& S_Sgt Macario Garcia	1	Ave J	7/8/85	WB	1985
Ave J	Wayside	Ave J \& Wayside	1	Ave J	7/22/57		1957
Ave K	67th	Ave K \& 67th	1	Ave K	12/21/99		1999
Ave K	S_Sgt Mac	Ave K \& S_Sgt Macario Garcia	1	Ave K	6/27/81		1981
Ave K	Terminal	Ave K \& Terminal	1	Ave K	9/20/01	WB	2001
Ave K	Terminal	Ave K \& Terminal	1	Ave K	9/20/01	WB	2001
Ave K	Wayside	Ave K \& Wayside	1	Ave K	7/22/57		1957
Ave L	67th	Ave L \& 67th	1	Ave L	12/21/99		1999
Ave L	S_Sgt Mac	Ave L \& S_Sgt Macario Garcia	1	Ave L	6/27/81		1981
Ave L	Wayside	Ave L \& Wayside	1	Ave L	7/22/57		1957
Ave N	67th	Ave N \& 67th	1	Ave N	12/21/99		1999
Ave N	S_Sgt Mac	Ave N \& S Sgt Macario Garcia	1	Ave N	6/27/81		1981
Ave N	Wayside	Ave N \& Wayside	1	Ave N	7/22/57		1957
Ave O	67th	Ave O \& 67th	1	Ave O	12/21/99		1999
Ave O	S_Sgt Mac	Ave O \& S_Sgt Macario Garcia	1	Ave O	6/27/81		1981
Ave O	Wayside	Ave O \& Wayside	1	Ave O	7/22/57		1957
Baldinger	Rusk	Baldinger \& Rusk	1	Baldinger	9/7/93		1993
Canal	Maltby	Canal \& Maltby	1	Maltby	7/10/57		1957
Canal	Maltby	Canal \& Maltby	1	Maltby	7/10/57		1957
Canal	Marsden	Canal \& Marsden	1	Marsden	7/10/57		1957
Canal	Oldham	Canal \& Oldham	1	Oldham	7/10/57		1957
Capitol	67th	Capitol \& 67th	1	4 way stop	12/15/55		1955
Capitol	67th	Capitol \& 67th	1	Capitol	12/21/99		1999
67th	Sherman	67th \& Sherman	1	Sherman	12/21/99		1999
Harrisburg	Hughes	Harrisburg \& Hughes	1	Hughes	10/23/53		1953
Hughes	Texas	Hughes \& Texas	1	Texas	9/26/56		1956
S_Sgt Mac	Sherman	S_Sgt Macario Garcia \& Sherman	1	Sherman	6/27/81		1981
Mack	Navigation	Mack \& Navigation	1	Mack	6/8/59		1959
Maltby	Navigation	Maltby \& Navigation	1	Maltby	1/14/54		1954
Maltby	Navigation	Maltby \& Navigation	1	Maltby	1/14/54		1954
Marsden	Sherman	Marsden \& Sherman	1	Marsden	6/22/53		1953
Navigation	Wooding	Navigation \& Wooding	1	Wooding	10/23/53		1953
Navigation	Terminal	Navigation N SR \& Terminal	1	Terminal	5/17/71	NB	1971
Navigation	Terminal	Navigation S SR \& Terminal	1	Terminal	5/17/71		1971
Sherman	Wayside	Sherman \& Wayside	1	Sherman	7/5/49		1949
67th	Harrisburg	67th \& Harrisburg	3	All appro	7/1/54		1954
Ave R	S_Sgt Mac	Ave R \& S_Sgt Macario Garcia	3	All appro	5/23/56		1956
Canal	S_Sgt Mac	Canal \& S_Sgt Macario Garcia	3	All appro	5/3/56		1956
Canal	S_Sgt Mac	Canal \& S_Sgt Macario Garcia	3	All appro	5/30/56		1956
Canal	Wayside	Canal \& Wayside	3	All appro	7/1/54		1954
Capitol	S_Sgt Mac	Capitol \& S_Sgt Macario Garcia	3	All appro	2/26/58		1958
Capitol	S_Sgt Mac	Capitol \& S_Sgt Macario Garcia	3	All appro	2/26/58		1958
Capitol	Wayside	Capitol \& Wayside	3	All appro	7/1/54		1954
Harrisburg	S_Sgt Mac	Harrisburg \& S_Sgt Macario Garcia	3	All appro	7/1/54		1954
Harrisburg	S_Sgt Mac	Harrisburg \& S_Sgt Macario Garcia	3	All appro	7/1/54		1954
Harrisburg	Wayside	Harrisburg \& Wayside	3	All appro	7/1/54		1954
S Sgt Mac	Navigation	S_Sgt Macario Garcia \& Navigation	3	All appro	7/1/54		1954
S_Sgt Mac	Navigation	S_Sgt Macario Garcia \& Navigation	3	All appro	7/1/54		1954
S_Sgt Mac	Polk Ways	S_Sgt Mac Garcia \& Polk Wayside	3	All appro	5/30/60		1960
Navigation	Wayside	Navigation \& Wayside	3	All appro	7/1/54		1954

Appendix F

-

Data for Site 1

Site Street(s):	Wayside and Navigation, looking SB				$15^{\text {th }}$ Percentile:	33
Date:	7/10/03	Lowest Speed:		26		
Start Time:	9:40 AM	Highest Speed:		49	$50^{\text {th }}$ Percentile:	36
End Time:	10:25 AM	Average Speed:		37.55	$85^{\text {th }}$ Percentile:	42
Direction(s):	SB	Median Speed:		37	$95^{\text {th }}$ Percentile:	46
Posted Speed Limit:	40	Modal Speed:		36		
Violation Percent:	26\%	Standard Deviation:		4.42		
Number of Lanes:	4 cars, trucks	10 mph Pace Speed:		34 to 43		
Types of Vehicles:		\% in Pace Speed:		74\%		
Weather Conditions:	cars, trucks clear	\% Under Pace Speed:		16\%		
Vehicles Observed:	$\begin{aligned} & \text { clear } \\ & 100 \end{aligned}$	\% Over Pace Speed:		10\%		
Observations: Speeds Recorded:	speed limit sign knocked down at Ave R @ Wayside a year ago, says lo					
26	33	35	36	38	41	44
29	34	36	37	38	41	44
30	34	36	37	38	41	45
30	34	36	37	38	41	46
31	34	36	37	38	42	46
32	34	36	37	39	42	47
32	34	36	37	39	42	47
32	34	36	37	39	42	47
32	34	36	37	39	42	47
33	34	36	37	39	42	49
33	34	36	37	39	42	
33	35	36	37	39	42	
33	35	36	37	40	43	
33	35	36	38	40	43	
33	35	36	38	41	43	

Data Analysis:

speed	frequency	\% of Speeds	Cumul. \%
26	1	1%	1%
27	0	0%	1%
28	0	0%	1%
29	1	1%	2%
30	2	2%	4%
31	1	1%	5%
32	4	4%	9%
33	7	7%	16%
34	10	10%	26%
35	5	5%	31%
36	15	15%	46%
37	12	12%	58%
38	7	7%	65%
39	2	7%	72%
40	5	2%	74%
41	8	5%	79%
42	3	8%	87%
43	2	3%	90%
44	1	2%	92%
45	2	1%	93%
46	4	2%	95%
47	0	4%	99%
48	1	0%	99%
49		1%	100%

Speed Distribution

Cumulative Distribution

Data for Site 2

Site Street(s): \quad Wayside and Navigation, looking EB

Date:	7/10/03	Lowest Speed:	24	$15^{\text {th }}$ Percentile:	27
Start Time:	$10: 45 \mathrm{AM}$	Highest Speed:	40	$50^{\text {th }}$ Percentile:	31
End Time:	$11: 45 \mathrm{AM}$	Average Speed:	31.75	$85^{\text {th }}$ Percentile:	34
Direction(s):	EB	Median Speed:	32	$95^{\text {th }}$ Percentile:	38
Posted Speed Limit:	35	Modal Speed:	34		
Violation Percent:	15%	Standard Deviation:	3.64		
Number of Lanes:	2 EB, 2 WB	10 mph Pace Speed:	27 to 36		
Types of Vehicles:	cars, trucks	\% in Pace Speed:	82.7%		
Weather Conditions:	cloudy, dry	\% Under Pace Speed:	6.7%		
Vehicles Observed:	75	\% Over Pace Speed:	10.7%		
Observations:	very short light timing on Navigation (12 sec); no chance to really speed				

Speeds Recorded:

24	29	31	33	34
25	29	31	33	34
25	29	31	33	35
26	29	31	33	35
26	30	31	33	36
27	30	31	33	36
27	30	31	33	36
27	30	32	34	37
27	30	32	34	38
27	30	32	34	38
27	30	32	34	38
28	30	32	34	38
28	30	32	34	39
28	31	33	34	40
29	31	33	34	40

Data Analysis:

speed	frequency	$\%$ of Speeds	Cumulative $\%$
24	1	1%	1%
25	2	3%	4%
26	2	3%	7%
27	6	8%	15%
28	3	4%	19%
29	5	7%	25%
30	9	12%	37%
31	9	12%	49%
32	6	8%	57%
33	9	12%	69%
34	10	13%	83%
35	2	3%	85%
36	3	4%	89%
37	1	1%	91%
38	4	5%	96%
39	1	1%	97%
40	2	3%	100%

Data for Site 3

Site Street(s):	Wayside and Canal, looking SB				$15^{\text {th }}$ Percentile:	
Date:	7/11/03	Lowest Speed:		26		31
Start Time:	9:45 AM	Highest Speed:		50	$50^{\text {th }}$ Percentile:	35
End Time:	10:20 AM			35.98	$85^{\text {th }}$ Percentile:	40
Direction(s):	SB	Median Speed:		35.5	95 ${ }^{\text {th }}$ Percentile:	42
Posted Speed Limit:	40	Modal Speed:		34		
Violation Percent:	16\%	Standard Deviation:		4.15		
Number of Lanes:	4	10 mph Pace Speed:		33 to 42		
Types of Vehicles:	cars, trucks	\% in Pace Speed:		75\%		
Weather Conditions:	clear	\% Under Pace Speed:		21\%		
Vehicles Observed:	100	\% Over Pace Speed:		4\%		
Observations: Speeds Recorded:						
26	32	34	35	37	39	41
29	32	34	35	37	39	42
29	32	34	35	37	39	42
30	32	34	35	37	39	42
30	32	34	35	37	39	42
30	32	34	36	37	39	42
31	33	34	36	37	39	45
31	33	34	36	38	39	45
31	33	34	36	38	40	47
31	33	34	36	38	41	50
31	33	34	36	38	41	
32	33	34	36	38	41	
32	33	35	36	39	41	
32	33	35	37	39	41	
32	33	35	37	39	41	

Data Analysis

speed	frequency	\% of Speeds	Cumul. $\%$
26	1	1%	1%
27	0	0%	1%
28	0	0%	1%
29	2	2%	3%
30	3	3%	6%
31	5	5%	11%
32	10	10%	21%
33	9	9%	30%
34	12	12%	42%
35	8	8%	50%
36	8	8%	58%
37	9	9%	67%
38	5	5%	72%
39	11	11%	83%
40	1	1%	84%
41	7	7%	91%
42	5	5%	96%
43	0	0%	96%
44	0	0%	96%
45	2	2%	98%
46	0	0%	98%
47	1	1%	99%
48	0	0%	99%
49	0	0%	99%
50	1	1%	100%

Speed Distribution

Data for Site 4

Site Street(s): Wayside and Canal, looking EB

Data Collector(s):	LW \& H.A.	Lowest Speed:	24	$15^{\text {th }}$ Percentile:	25
Date:	$7 / 11 / 03$	Highest Speed:	35	$50^{\text {th }}$ Percentile:	28
Start Time:	$10: 30$ AM	Average Speed:	28.58	$85^{\text {th }}$ Percentile:	31
End Time:	$11: 30$ AM	Median Speed:	28	$95^{\text {th }}$ Percentile:	34
Direction(s):	EB	Modal Speed:	26	Violation Percent:	24%
Posted Speed Limit:	30	Standard Deviation:	2.94		
Number of Lanes:	2 EB, 2 WB	10 mph Pace Speed:	25 to 34		
Types of Vehicles:	cars, trucks	\% in Pace Speed:	94%		
Weather Conditions:	clear	\% Under Pace Speed:	2%		
Vehicles Observed:	50	\% Over Pace Speed:	4%		

parking in Rt lane on EB side; lots of driveways and access management issues
Speeds Recorded:

24	26	29	33
25	26	29	34
25	27	30	34
25	27	30	35
25	27	30	35
25	28	30	
25	28	30	
26	28	30	
26	28	31	
26	28	31	
26	28	31	
26	28	31	
26	29	32	
26	29	33	
26	29	33	

Data Analysis:

speed	frequency	$\%$ of Speeds	Cumul. \%
24	1	2%	2%
25	6	12%	14%
26	10	20%	34%
27	3	6%	40%
28	7	14%	54%
29	5	10%	64%
30	6	12%	76%
31	4	8%	84%
32	1	2%	86%
33	3	6%	92%
34	2	4%	96%
35	2	4%	100%

Data for Site 5

Site Street(s): Canal and Sgt. Marcario Garcia, looking EB
Date:
Start Time:
End Time:
Direction(s):
Posted Speed Limit:
Violation Percent:
Number of Lanes:
Types of Vehicles:
Weather Conditions:
Vehicles Observed: 50

7/11/03 Lowest Speed: 24
12:15 PM Highest Speed: 37
1:15 PM Average Speed: 28.92
EB
30
26\%
2 EB, 2 WB
cars, trucks
clear
Median Speed: $\quad 29$
Modal Speed: $\quad 27$
Standard Deviation: 3.11
10 mph Pace Speed: 24 to 33
\% in Pace Speed: $\quad 92 \%$
\% Under Pace Speed: 0\%
\% Over Pace Speed: 8\%

Observations:
Speeds Recorded:

24	27	30	32
24	27	30	35
25	27	30	35
25	27	30	37
25	28	30	37
25	28	30	
26	28	30	
26	28	31	
26	28	31	
26	29	31	
26	29	32	
26	29	32	
27	29	32	
27	29	32	
27	29	32	

Data Analysis:

speed	frequency	$\%$ of Speeds	Cumul. $\%$
24	2	4%	4%
25	4	8%	12%
26	6	12%	24%
27	7	14%	38%
28	5	10%	48%
29	6	12%	60%
30	7	14%	74%
31	3	6%	80%
32	6	12%	92%
33	0	0%	92%
34	0	0%	92%
35	2	4%	96%
36	0	0%	96%
37	2	4%	100%

Data for Site 6

Site Street(s): Canal and Sgt. Marcario Garcia, looking NB
Date:
Start Time:
End Time:
Direction(s):
Posted Speed Limit:
Violation Percent:
Number of Lanes:
Types of Vehicles:
Weather Conditions:
Vehicles Observed:

Observations:

Speeds Recorded:

28	30	32	33	35	37	39
29	30	32	34	35	37	39
29	31	32	34	35	37	40
29	31	32	34	35	37	40
29	31	32	34	35	38	40
29	31	32	34	35	38	40
30	31	32	34	36	38	41
30	31	32	34	36	38	41
30	31	32	34	36	38	42
30	32	32	35	36	38	42
30	32	32	35	36	38	
30	32	33	35	36	39	
30	32	33	35	36	39	
30	32	33	35	36	39	
30	32	33	35	37	39	

Data Analysis:

speed	frequency	\% of Speeds	Cumul. \%
28	1	1%	1%
29	5	5%	6%
30	11	11%	17%
31	7	7%	24%
32	17	17%	41%
33	5	5%	46%
34	8	8%	54%
35	12	12%	66%
36	8	8%	74%
37	5	5%	79%
38	7	7%	86%
39	4	6%	92%
40	2	4%	96%
41	2	2%	98%
42	2%	100%	

Speed Distribution

Cumulative Distribution

Data for Site 7

Site Street(s):	Wayside and Capitol, looking SB					
Date:	$7 / 14 / 03$	Lowest Speed:	24	$15^{\text {th }}$ Percentile:	27	
Start Time:	$10: 00 ~ A M$	Highest Speed:	36	$50^{\text {th }}$ Percentile:	29	
End Time:	$10: 35 \mathrm{AM}$	Average Speed:	29.37	$85^{\text {th }}$ Percentile:	32	
Direction(s):	SB	Median Speed:	29	$95^{\text {th }}$ Percentile:	33	
Posted Speed Limit:	40	Modal Speed:	28			
Violation Percent:	0%	Standard Deviation:	2.58			
Number of Lanes:	4	10 mph Pace Speed:	25 to 34			
Types of Vehicles:	cars, trucks	\% in Pace Speed:	96%			
Weather Conditions: clear	\% Under Pace Speed:	3%				
Vehicles Observed:	75	\% Over Pace Speed:	1%			

Observations: flattened ped sign by shopping center; lots of peds crossing Wayside;
signal timing at Wayside@Harrisburg prevents high speeds at Capitol intersection
Speeds Recorded:

24	27	28	30	32
24	27	28	30	32
25	27	29	30	32
25	27	29	30	32
26	28	29	31	32
26	28	29	31	33
26	28	29	31	33
26	28	29	31	33
26	28	29	31	33
27	28	29	31	33
27	28	30	31	33
27	28	30	31	33
27	28	30	32	34
27	28	30	32	34
27	28	30	32	36

Data Analysis:

speed	frequency	$\%$ of Speeds	Cumul. \%
24	2	3%	3%
25	2	3%	5%
26	5	7%	12%
27	10	13%	25%
28	13	17%	43%
29	8	11%	53%
30	9	12%	65%
31	8	11%	76%
32	8	11%	87%
33	7	9%	96%
34	2	3%	99%
35	0	0%	99%
36	1	1%	100%

Data for Site 8

Site Street(s):	Capitol and Wayside, looking WB				
Date:	7/14/03	Lowest Speed:	22	$15^{\text {th }}$ Percentile:	23
Start Time:	10:40 AM	Highest Speed:	36	$50^{\text {th }}$ Percentile:	26
End Time:	11:25 AM	Average Speed:	27.24	$85^{\text {th }}$ Percentile:	30
Direction(s):	WB	Median Speed:	26	$95^{\text {th }}$ Percentile:	33
Posted Speed Limit:	30	Modal Speed:	24		
Violation Percent:	16\%	Standard Deviation:	3.54		
Number of Lanes:	$2 \mathrm{~EB}, 2 \mathrm{WB}$	10 mph Pace Speed:	24 to 33		
Types of Vehicles:	cars, buses	\% in Pace Speed:	86\%		
Weather Conditions:	clear	\% Under Pace Speed:	8\%		
Vehicles Observed:	50	\% Over Pace Speed:	6\%		
Observations:	not much traffic; lots of left turns into bank before the intersection				

22	25	28	33
23	25	28	33
23	25	28	34
23	25	29	35
24	25	29	36
24	25	29	
24	25	30	
24	26	30	
24	26	30	
24	26	30	
24	26	30	
24	27	30	
24	27	31	
24	28	32	
24	28	33	

Data Analysis:

speed	frequency	\% of Speeds	Cumul. \%
22	1	2%	2%
23	3	6%	8%
24	11	22%	30%
25	7	14%	44%
26	4	8%	52%
27	2	4%	56%
28	5	10%	66%
29	3	6%	72%
30	6	12%	84%
31	1	2%	86%
32	1	2%	88%
33	3	6%	94%
34	1	2%	96%
35	1	2%	98%
36	1	2%	100%

Data for Site 9

Site Street(s): Capitol and Wayside, looking EB
Date:
7/14/03 Lowest Speed:
$20 \quad 15^{\text {th }}$ Percentile: 22
Start Time:
End Time:
Direction(s):
Posted Speed Limit:
Violation Percent:
11:30 AM Highest Speed:
33
12:20 PM Average Speed:
25.52
$50^{\text {th }}$ Percentile: 25
$85^{\text {th }}$ Percentile: $\quad 28$
EB
30
Median Speed:
25
$95^{\text {th }}$ Percentile: $\quad 31$
24

Number of Lanes:
Types of Vehicles:
Weather Conditions:
Vehicles Observed:
Observations:

10\%
Standard Deviation:
2 EB, 2 WB
3.15
cars
clear
50 \% Over Pace Speed: 4\%
no white lane markings; 2 hr parking in R-lane on EB side; most turn into driveways before intersection; many slow to yield to WB cars turning left onto Wayside

Speeds Recorded:

20	24	26	31
20	24	26	31
21	24	27	31
21	24	27	32
22	24	27	33
22	24	27	
22	24	27	
22	25	27	
22	25	28	
23	25	28	
23	25	28	
23	25	28	
24	25	29	
24	26	30	
24	26	30	

Data Analysis:

speed	frequency	\% of Speeds	Cumul. \%
20	2	4%	4%
21	2	4%	8%
22	5	10%	18%
23	3	6%	24%
24	10	20%	44%
25	6	12%	56%
26	4	8%	64%
27	6	12%	76%
28	4	8%	84%
29	1	2%	86%
30	2	4%	90%
31	3	6%	96%
32	1	2%	98%
33	1	2%	100%

Appendix G

-

East End Crash Data - 2 Year Hard Copies 2002-2003

Numbers in parentheses represent factor codes from accident reports [ex: (15)]
Demographics include all parties included in accidents (not the surname of vehicle)
FSGI are those who fail to stop and give insurance (hit and runs)
Injury Severities include all drivers and passengers.
SSSD=Sideswipe Same Direction

The following intersections are high frequency accident sites.

Navigation/Wayside

Classifications: 10 accidents in diagram
Right Angle $=4$ (40\%)
Rear End $=1$ (10\%)
Left Turn $=2$ (20\%)
Right Turn $=1$ (10%)
SSSD = 2 (20\%)
10 Total Noted Crashes
All Intersection/intersection related
demographics: White $=10$;Hispanic $=6$;other $=2$
Male $=15$;Female $=3$
FSGI=2
all auto crashes
times: 6 day/4 night
$5(15,16)$ ran red light one incident on wet road surface
2 (4) changed lanes when unsafe
1 (22) failed to control speed-rear end
1 (64) turned improperly-wide right
1 (65) turned improperly-wrong lane
Injury Severities:
16 non-injured
1 possible injury to passenger
6 possible injuries to drivers

Navigation/ S_Sgt Macario Garcia
Classifications: 6 accidents in diagram
Right Angle $=1(16.7 \%)$
Rear End = 1 (16.7\%)
$\mathrm{SSSD}=3$ (50\%)

Pedestrian $=1$ (16.7\%)
6 Total Noted Crashes
All Intersection/intersection related
Demographics: White $=6$;Hispanic $=5$
Male $=8$;Female $=3$
FSGI=1
5 auto/ 1 cyclist
times: 4 day/2 night
3 (65) turned improperly-wrong lane
1 (15) ran red light
1 (20) driver inattention
1 cyclist involved
1 (22) failed to control speed-rear end
Injury Severities:
16 non-injured
1 possible injury to cyclist
1 possible injury to driver
4 possible injuries to passengers
1 non-incapacitating passenger
1 incapacitating injury to driver

Canal/Wayside

Classifications: 11 accidents in diagram
Right Angle $=6$ (55\%)
Rear End $=1$ (9\%)
Left Turn $=1$ (9\%)
SSSD = 3 (27\%)
11 Total Noted Crashes
All Intersection/intersection related
Demographics: White $=19 ;$ Hispanic $=4$
Male=22;Female=1
FSGI=2
All auto crashes
Times: 7 day/4 night
4 (15) ran red light
1 night/rain/wet road surface
2 (65) turned improperly-wrong lane
2 (74) signal lights not working; conflicting statements
1 night/rain/wet road surface
1 (23) failed to drive in a single lane
night/rain/wet road surface
1 (37) failed to yield row-turning left
night/clear/wet road surface
1 unknown
Injury Severities:
31 non-injured

5 possible injuries to drivers
3 possible injuries to passengers

Canal/S_Sgt Macario Garcia

Classifications: 12 accidents in diagram
Right Angle = 5 (42\%)
Rear End $=2$ (17\%)
Left Turn $=1$ (8%)
SSSD = 3 (25\%)
Cyclist = 1 (8\%)
12 Total Noted Crashes
All Intersection/intersection related
Demographics: White $=15$;Hispanic $=9$
Male=14;Female=10
FSGI=1
11 auto/ 1 cyclist crashes
Times: 10 day/2 night
4 (15) ran red light
2 (22) failed to control speed
$1 \mathrm{rain} /$ wet road surface
2 (4) changed lane when unsafe
1 night
1 (65) turned improperly-wrong lane
1 (74) cyclist failed to yield row
2 unknowns
1 night
Injury Severities:
34 non-injured
5 possible injuries to passengers
2 possible injuries to drivers
2 non-incapacitating drivers

Capitol/Wayside

Classifications: 6 accidents in diagram
Right Angles $=6(100 \%)$
6 Total Noted Crashes
All Intersection/intersection related
Demographics: White $=4 ;$ Hispanic $=7 ;$ Black $=2$
Male $=8$;Female $=5$
FSGI=1
All auto crashes
Times: all are daytimes
$5(15,16)$ ran red light
2 rain/wet road surface
1 rain
1 unknown
rain/wet road surface
Injury Severities:
10 non-injured
5 possible injuries to driver
1 possible injury to passenger
1 non-incapacitating injury to driver

Crash Data - 2 Year Hard Copies
 2002-2003

Numbers in parentheses represent factor codes from accident reports [ex: (15)]
Demographics include all parties included in accidents (not the surname of vehicle)
FSGI are those who fail to stop and give insurance (hit and runs)
Sideswipes: (sd)=same direction; (od)=opposite direction
The following are corridor and intersection data.
Injury Severities include all drivers and passengers

Ave B
1 noted crash
Corridor related-parked car 6500 blk
Demographics: 1 white male
Daytime
(3) backed without safety; angled

Ave B/65 ${ }^{\text {th }}$
1 noted crash
Intersection related-fixed object
FSGI
Daytime
Ave C
1 noted crash
Corridor related-auto crash
6900 blk
Demographics: 1 white male
FSGI
Daytime
(3) backed without safety; angled

Ave C/Wayside
3 noted crashes
Intersection related-auto crashes
Demographics: White $=3$;Hispanic $=3$;Male $=5$;Female $=1$
3 daytimes
2 (35) failed to yield row-stop sign; 1 sideswipe (sd) $/ 1$ angled
$1 \mathrm{rain} /$ wet road
$1(35,66)$ failed to yield row-stop sign, turned when unsafe; angled

Ace C/S_Sgt Macario Garcia

2 noted crashes
Intersection related-auto crashes
Demographics: 2 Hispanic males
2 FSGI
2 nights
2 (35) failed to yield row-stop sign; angled $1 \mathrm{rain} / \mathrm{wet}$ road
Ave E
1 noted crash
Corridor related-auto crash
6700 blk
Demographics: White $=2 ;$ Male $=1 ;$ Female $=1$
Daytime
(49) improper start from parked; angled

Ave E/Cesar Chavez(67 ${ }^{\text {th }}$)
1 noted crash
Intersection related-auto crash
Demographics: Hispanic=1; Black=1; Males=2
Daytime
(35) failed to yield row-stop sign; angled

Ave E/S_Sgt Macario Garcia
2 noted crashes
Intersection related-auto crashes
Demographics: White $=4 ;$ Male $=3 ;$ Female $=1$
1 day/1 night
1 (23) failed to drive in single lane; sideswipe (sd)
1 wet road
1 (4) changed lane when unsafe; sideswipe (sd)
Ave F
6 noted crashes
Corridor related-1 auto, 1 pedestrian, 4 parked cars
$6600,6700,7000$ blk
Demographics: White $=2$; Hispanic $=3$; Male $=5 ;$ Female $=1$
2 FSGI
4 days/2 nights
3 (3) backed without safety; angled
2 (23) failed to drive in single lane; 2 rear ends
1 (20) driver inattentive; pedestrian
Ave F/Wayside
2 noted crashes
Intersection related-1 auto, 1 pedestrian crash
Demographics: White $=1$; Hispanic=1; Black=2; Males=4

Daytime
1(35) failed to yield row-stop sign; angled
1 unknown; pedestrian
Ave F/S_Sgt Macario Garcia
2 noted crashes
Intersection related-1 auto, 1 cyclist
Demographics: Hispanic=3; Black=1; Male=2; Female=2
Daytime
$1(20,23)$ driver inattentive, failed to drive in single lane; sideswipe (sd)
1 unknown; cyclist
Ave H
1 noted crash
Corridor related- parked car
Demographics: 1 White male
Daytime
(23) failed to drive in single lane-sideswipe (sd)

Ave H/67 ${ }^{\text {th }}$
1 noted crash
Intersection related-parked car
Demograhics: 2 Hispanic males
Night
(23) failed to drive in single lane; sideswipes (sd)

Ave H/70 ${ }^{\text {th }}$
1 noted crash
Intersection related-auto crash
Demographics: 2 white females
Night
(35) failed to yield row-stop sign; angled 1 wet road
Ave $\mathrm{H} /$ Wooding
1 noted crash
Intersection related-fixed object
Demographics: Hispanic Male
Daytime
$(16,22)$ disregard stop sign or light/failed to control speed
Ave H/S_Sgt Macario Garcia
2 noted crashes
Intersection related-auto crashes
Demographics: White $=2$; Hispanic $=2 ;$ Males $=4$
1 FSGI
1 day/1night
1 (35) failed to yield row-stop sign; angled

1 (64) turned improperly -wide right; angled
Ave I
2 noted crashes
Corridor related-parked cars
6500, 6700 blk
Demographics: 1 Hispanic Male
1 FSGI
1 day/1 night
1 (22) failed to control speed; head-on
1 (23) failed to drive in single lane; head-on
Ave $1 / 66^{\text {th }}$
2 noted crashes
Intersection related-parked cars
Demographics: 1 Hispanic Male
2 FSGI
1 day/1 night
1 (3) backed without safety; angled
1 unknown; angled
Ave I/Cesar Chavez ($67^{\text {th }}$)
2 noted crashes
Intersection related-1 parked car, 1 auto crash
Demographics: Hispanic=2; Black=1; Male=2; Female=1
1 day/1 night
1 (35) failed to yield row-stop sign; angled $1 \mathrm{rain} /$ wet road
1 (3) backed without safety; angled
Ave I/Wayside
2 noted crashes
Intersection related-auto crashes
Demographics: White=2; Hispanic=2; Male=3; Female=1
Daytimes
1 (65) turned improperly -wrong lane; sideswipe (sd)/ angled
1 (4) changed lane when unsafe; sideswipe (sd)
Ave I/S_Sgt Macario Garcia
1 noted crash
Intersection related-auto crash
Demographics: 1 White Male
1 FSGI
Night
(4) changed lane when unsafe; sideswipe (sd)

1 rain/wet road
Ave J

1 noted crash
Corridor related- parked car
Demographics: 2 White males
1 FSGI
Night
$(22,23)$ failed to control speed/failed to drive in single lane; sideswipe (sd)
Ave J/Wayside
1 noted crash
Intersection related-auto crash
Demographics: 2 Hispanic Males
Daytime
(65) turned improperly -wrong lane; angled

Ave J/S_Sgt Macario Garcia
1 noted crash
Intersection related-auto crash
Demographics: Hispanic=2; Male=1; Female=1
Daytime
(65) turned improperly -wrong lane; sideswipe (sd)

Ave K
1 noted crash
Corridor related-auto crash
Demographics: 2 Hispanic Males
Night
(3) backed without safety; angled

Ave K/S_Sgt Macario Garcia
2 noted crashes
Intersection related-auto crashes
Demographics: White $=2$; Hispanic $=2$; Male $=1$; Female=3
1 day/1 night
1 (35) failed to yield row-stop sign; angled
1 (4) changed lane when unsafe; sideswipe (sd)
Ave L
3 noted crashes
Corridor related-parked cars
6600, 6700 blk
Demographics: 1 Hispanic Male; 1 White Female
1 FSGI
1 day/2 nights
1 (23) failed to drive in single lane; sideswipe (od)/ head-on
$1 \mathrm{rain} /$ wet roads
1 (22) failed to control speed; sideswipe (sd)
1 rain/wet roads

1 (3) backed without safety; angled
Ave L/Wayside
3 noted crashes
Intersection related-auto crashes
Demographics: White=2; Hispanic=4; Male=2; Female=4
1 FSGI
1 day/2 nights
$1(3,20)$ backed without safety/ driver inattentive; angled
1 (16) disregard for stop sign or light; angled
1 (3) backed without safety; rear-end
Ave N
3 noted crashes
Corridor related-1 auto, 1 parked car, 1 fixed object
6800-7000 blk
Demographics: White $=2$; Hispanic $=2$; Male $=3$; Female $=1$
2 days/1 night
1 (26) failed to pass to left safely; angled
$1(20,22)$ driver inattentive/ failed to control speed; head-on parked car
1 (23) failed to drive in single lane

Ave N/Wayside
1 noted crash
Intersection related-auto crash
Demographics: Hispanic=2; Male=1; Female=1
1 FSGI
Daytime
(16) disregard for stop sign or signal; angled

Ave 0
4 noted crashes
Corridor related-1 pedestrian, 3 parked cars
6600, 6800-6900 blk
Demographics: White $=1$; Hispanic $=1$; Male $=2$
3 FSGI
1 day/3 nights
1 (23) failed to drive in single lane
pedestrian accident
1 (3) backed without safety; angled
2 (22) failed to control speed; 2 rear-ends
Ave O/S_Sgt Macario Garcia
2 noted crashes

Intersection related-auto crashes
Demographics: 4 Hispanic Males
1 day/1 night
1 (35) failed to yield row-stop sign; angled
$1(20,23)$ driver inattentive/ failed to drive in single lane; sideswipe (sd)
Ave O/Wayside
1 noted crash
Intersection related-auto crash
Demographics: 2 Hispanic Males
Night
(4) changed lane when unsafe; sideswipe (sd)

Ave P
3 noted crashes
Corridor related-parked cars
6600, 6800-6900 blk
3 FSGI
3 days
2 (22) failed to control speed; 1 sideswiped (sd)
1 (3) backed without safety; angled
Ave $P / 71^{\text {st }}$
1 noted crash
Intersection related-fixed object
Demographics: 1 White Male
Night
(22) failed to control speed

Ave Q
2 noted crashes
Corridor related-1 parked car, 1 pedestrian
6642, 7000 blk
Demographics: 1 White Female; 1 Hispanic Male
1 FSGI
2 nights
1 (3) backed without safety; rear-end
1 (23) failed to drive in single lane pedestrian accident

Ave Q/Wayside
3 noted crashes
Intersection related-2 auto, 1 fixed object
Demographics: White=3; Hispanic=2; Male=3; Female=2
3 days
$1(35,48)$ failed to yield row-stop sign/impaired visibility; angled
$1(20,22)$ driver inattentive/failed to control speed fixed object
1 (35) failed to yield row-stop sign; angled wet road

Ave Q/S_Sgt Macario Garcia
1 noted crash
Intersection related-auto crash
Demographics: 1 White Female
1 FSGI
Night
(35) failed to yield row-stop sign; angled

Ave R
4 noted crashes
Corridor related-2 auto, 1 parked car
6790, 6800 blk
Demographics: White=2; Hispanic=2: Male=4;
3 FSGI
2 day/1 night
2 (22) failed to control speed; 2 rear-ends
1 parked car
1 (74) unable to determine; head-on
1 (3) backed without safety; angled
Ave R/Wayside
3 noted crashes
Intersection related-auto crashes
Demographics: White=3; Hispanic=2; Black=1; Male=4; Female=2
1 day/2 nights
1 (65) turned improperly -wrong lane; sideswipe (sd)
1 (37) failed to yield row-turning left; angled
1 (15) disregard stop and go signal; angled
Ave R/S_Sgt Macario Garcia
2 noted crashes
Intersection related-auto crashes
Demographics: White $=3$; Hispanic $=1$; Male=2; Female=2
2 days
1 (16) disregard stop sign or light; angled
rain/wet road
1 (22) failed to control speed; rear-end

Ave S
1 noted crash

Corridor related-auto crash
6900 blk
Demographics: 1 Black Male; 1 Hispanic Female
Daytime
(3) backed without safety; rear-end

Ave S/Wayside
2 noted crashes
Intersection related-auto crashes
Demographics: White=1; Hispanic=3; Male=2; Female=2
2 days
1 (37) failed to yield row-turning left; angled
rain/wet road
$1(55,74)$ parked in traffic lane/ mechanical failure; angled
Ave T
4 noted crashes
Corridor related- 3 parked cars, 1 flying object
6600, 6800 blk
Demographics: 1 Hispanic Male
3 FSGI
2 days/2 nights
1 (22) failed to control speed; rear-end
1 unknown; rear-end
1 (74) other factors; sideswipe
1 (74) flying basketball
Ave U/Wayside
2 noted crashes
Intersection related-auto crashes
Demographics: White $=1$; Hispanic $=1$; Black $=2 ;$ Male $=1$; Female $=3$
2 days
1 (65) turned improperly -wrong lane; angled rain/wet road
1 (4) changed lane when unsafe; sideswipe (sd)
Ave U
1 noted crash
Corridor related-auto crash
6800 blk
Demographics: 2 Black Males
Daytime
(34) failed to yield row-private drive; angled

Capitol

4 noted crashes

Corridor related-1 fixed object, 1 pedestrian, 2 auto crashes 6600-6900 blk
Demographics: White=2; Hispanic=2; Black=2; Male=5; Female=1
1 FSGI
2 days/ 2 nights
$1(20,23)$ driver inattentive/failed to drive in single lane
fixed object
$1(28,65)$ failed to signal or gave wrong signal/turned improperly-wrong lane; sideswipe (sd)
1 (65) turned improperly -wrong lane; sideswipe (sd)
1 (59) pedestrian failed to yield row to vehicle

Capitol/ $70^{\text {th }}$
3 noted crashes
Intersection related-auto crashes
Demographics: White=3; Hispanic=2: Male=2: Female=3
3 days
1 (66) turned when unsafe; angled wet road
1 (29) failed to stop at proper place; angled
1 (57) passed in no passing zone; angled
Canal
5 noted crashes
Corridor related- 2 parked cars, 3 auto crashes
6500, 6800, 7000 blk
Demographics: White=6; Hispanic=2; Male=4; Female=4
1 FSGI
2 days/3 nights
1 (20) driver inattentive; rear-end
4 (22) failed to control speed; rear-ends
2 rain/wet road
Canal/ $66^{\text {th }}$
2 noted crashes
Intersection related-auto crashes
Demographics: 2 Hispanic Females; 1 White Male
1 FSGI
1 day/1 night
$1(35,74)$ failed to yield row-stop sign/failed to yield row to vehicle on the right; angled
1 (35) failed to yield row-stop sign; angled

Harrisburg

Corridor Related

6600-6700 blk
3 noted crashes- 1 fixed object, 2 auto crashes
Demographics: White $=2$; Hispanic $=2$; Male $=3$; Female=1
1 FSGI
2 days/ 1 night
2 (4) changed lanes when unsafe; sideswipes (sd)
1 (22) failed to control speed
fixed object
6800 blk
5 noted crashes-auto crashes
Demographics: White=7; Hispanic=4; Male=6; Female=5
3 days/2 nights
1 (4) changed lanes when unsafe; sideswipe (sd)
rain/wet road
1 (3) backed without safety; rear-end
2 (22) failed to control speed;
angled -rain/wet road rear-end
1 (34) failed to yield row-private drive; angled
6900 blk
11 noted crashes-auto crashes
Demographics: White=10; Hispanic=9; Male=11; Female=8
5 FSGI
6 days/5 nights
4 (22) failed to control speed; rear-ends
2 rain/wet roads
2 (37) failed to yield row-turning left; angled
$1(22,27)$ failed to control speed/failed to pass to right safely; angled
1 (33) failed to yield row-open intersection; angled
1 (65) turned improperly -wrong lane; angled rain/wet road
1 (23) failed to drive in single lane; sideswipe (sd)
1 (29) failed to stop at proper place; angled
Injury Severities for $6800 \& 6900$ Harrisburg:
31 non-injured;
5 possible injuries to passengers;
3 possible injuries to drivers;
1 fatality due to alcohol influence (not included in study)(driver hit tree)
7000 blk
3 noted crashes- 1 pedestrian, 2 auto crashes
Demographics: White=3; Hispanic=4; Male=5; Female=2
3 days
2 (22) failed to control speed;
angled-1 motorcycle
rear-end
1 (59) pedestrian failed to yield row to vehicle rain/wet road

Harrisburg/Cesar Chavez($\left.67^{\text {th }}\right)$
1 noted crash
Intersection related-auto crash
Demographics: White=2; Male=1; Female=1
Daytime
(22) failed to control speed; rear-end

Harrisburg/S_Sgt Macario Garcia
4 noted crashes
Intersection related-auto crashes
Demographics: White=7; Male=4; Female=3
1 FSGI
1 day/3 nights
2 (22) failed to control speed; rear-ends
2 (15) disregard stop and go signal; angled
Harrisburg/Wayside
1 noted crash
Intersection related-auto crash
Demographics: 2 Hispanic Males
Night
Unknown factors; angled
Harrisburg/65 ${ }^{\text {th }}$
1 noted crash
Intersection related-auto crash
Demographics: 3 White Males
Daytime
(35) failed to yield row-stop sign; angled

Navigation
4 noted crashes
Corridor related- 3 auto, 1 parked car
6600, 6800, 7000 blk
Demographics: White $=3$; Hispanic $=4$; Male $=4$; Female $=3$
1 FSGI
3 days/ 1 night
1 (23) failed to drive in single lane; sideswipe (sd)
1 (4) changed lanes when unsafe; angled
1 (22) failed to control speed; rear-end
1 (55) parked in traffic lane; sideswipe (sd)
parked car
Navigation/Maltby

1 noted crash
Intersection related-auto crash
Demographics: 2 Hispanic Males
Daytime
(35) failed to yield row-stop sign; angled

Navigation/Cesar Chavez($\left.67^{\text {th }}\right)$
1 noted crash
Intersection related-auto crash
Demographics: 2 White Females; 1 Black Male
Night
(37) failed to yield row-turning left; angled rain/wet road

S_Sgt Macario Garcia
8 noted crashes
Corridor related-1 cyclist, 7 auto crashes
600, 900-1000, 1300, 1500-1600 blk
Demographics: White=7; Hispanic=7; Male=8; Female=6
3 FSGI
5 days/3 nights
2 (23) failed to drive in single lane; sideswipe (sd)
$1(22,44)$ failed to control speed/followed too closely; rear-end
1 (22) failed to control speed; rear-end
2 (4) changed lanes when unsafe; sideswipe (sd)
1 (16) disregard stop sign or light; angled
1 (34) failed to yield row-private drive
cyclist accident-muddy road
Sherman
3 noted crashes
Corridor related-1 fixed object, 2 parked car 6700 blk
Demographics: 1 Hispanic Male
2 FSGI
2 days/1night
1 (23) failed to drive in single lane fixed object-wet road
1 (22) failed to control speed; sideswipe (sd) parked car
1 unknown factor; sideswipe (sd)
Sherman/Cesar Chavez($67^{\text {th }}$)
1 noted crash
Intersection related-auto crash
Demographics: 2 Hispanic Females

Night
$(35,20)$ failed to yield row-stop sign/driver inattentive; angled
Sherman/Wayside
2 noted crashes
Intersection related-auto crashes
Demographics: Hispanic=2; Black=1; Male=2; Female=1
1 FSGI
1 day/1 night
1 (16) diregard stop sign or light; angled rain/wet road
1 (65) turned improperly -wrong lane; angled

Sherman/S_Sgt Macario Garcia

2 noted crashes
Intersection related-auto crashes
Demographics: White $=2$; Hispanic=2; Males=4
2 days
1 (3) backed without safety; rear-end
$1(20,23)$ driver inattentive/failed to drive in single lane; sideswipe (sd)
Terminal
1 noted crash
Corridor related-parked car 1100 blk
Demographics: 1 White Female
Daytime
(3) backed without safety; angled rain/wet road

Terminal/Ave Q
1 noted crash
Intersection related-fixed object
Demographics: 1 White Male
Daytime
(22) failed to control speed

Wayside
12 noted crashes
Corridor related-10 auto crashes, 2 fixed objects
300, 600-700, 900-1000, 1200-1300, 1900-2200 blk
Demographics: White=9; Hispanic=10; Black=2; Asian=1;
Male=17; Female=5
4 FSGI
10 days/ 2 nights
3 (22) failed to control speed; rear-ends

1 wet road
1 rain/ wet road
4 (4) changed lanes when unsafe; angled/sideswipes (sd)
1 (34) failed to yield row-private drive; angled
$1(22,23)$ failed to control speed/failed to drive in single lane fixed object
1 (16) disregard stop sign or light; angled
1 (71) wrong way-one way road; angled
$1(22,43)$ failed to control speed/fleeing or evading police fixed object

Wayside/Polk
1 noted crash
Intersection related-auto crash
Demographics: 1 Hispanic Female, 1 Black Male
Daytime
$(20,22)$ driver inattentive/failed to control speed; rear-end/angled

Appendix H

Hazard Elimination Program (HES)

Work Codes

CODE	ITEM
100	SIGNING AND SIGNALS
200	ROADSIDE OBSTACLES AND BARRIERS
300	RESURFACING AND ROADWAY LIGHTING
400	PAVEMENT MARKINGS
500	ROADWAY WORK

Signing and Signals

Work Code	Description	Definition	Reduction Factor \%	Preventable Accident
101	INSTALL WARNING/GUIDE SIGNS	Provide advance signing for unusual or unexpected roadway features where no signing existed previously.	20	(Vehicle Movements/Manner of Collision $=20-22$ or 30) OR (Roadway Related = 2 or 3)
102	Install STOP Signs	Provide STOP signs where none existed previously.	20	Intersection Related = 1 or 2
103	Install Advance Warning Signals	Provide flasher units, where none existed previously in advance of the identified problem area.	To be defined.	Will be determined from supplied diagram
104	Improve Advance Warning Signals	Bring existing flasher units into conformance with current design standards. Refer to W.C. 106 for modernization of intersection flashing beacons.	To be defined.	Will be determined from supplied diagram
105	Install Intersection Flashing Beacon	Provide a flashing beacon at an intersection where a beacon did not exit previously.	50	Intersection Related = 1 or 2
106	Modernize Intersection Flashing Beacon	Improve an existing flashing beacon, located at an intersection, to current design standards. Refer to W.C. 104 for non-intersection flashing beacon.	10	Intersection Related = 1or 2
107	Install Traffic Signal	Provide a traffic signal where none existed previously.	28	[(Intersection Related = 1 or 2) AND (Vehicle Movements/Manner of Collision = 10-39)] OR (First Harmful Event = 1 or 5)

108	Improve Traffic Signals	Modernize existing intersection signals to current design standards. Refer to W.C. 106 for modernization of intersection flashing beacons.	22	[(Intersectivi nclated $=1$ or 2) AND (Vehicle Movements/Manner of Collision $=10-39$)] OR (First Harmful Event = 1 or 5)
109	Add Left Turn Signal Phase	Provide a left turn signal phase at an existing signalized intersection with existing left turn lanes. Affected intersection approaches must be specified.	25	Vehicle Movements/Manner of Collision $=34$ or 36
110	Install Pedestrian Signal	Provide a pedestrian signal at an existing signalized location where no pedestrian phase exists, but pedestrian crosswalks existing. Refer to W.C. 403 for installation of pedestrian crosswalks.	15	First Harmful Event - 1
111	Interconnect Signals	Provide a communication link between two or more adjacent signals in a corridor. Specify all signalized intersections to be included in the interconnection.	10	All
112	Overheight Warning System	Install electronic devices to detect overheight loads.	65	Object Struck $=43$
113	Install Delineators	Install post mounted delineators to provide guidance.	30	(Roadway Related = 2 or 3) AND (Light Condition $=3$ or 4)
114	Install School Zones	Place school zones to include signing and /or pavement marking where none existed previously. Refer to W.C. 403 for pedestrian crosswalk markings.	20	All
115	Eliminate Parking with Milepoints	Completely remove existing parking on one side of the roadway in the direction of the milepoints.	32	(First Harmful Event $=1$ or 4 OR (Vehicle Movements/Manner of Collision $=40-44$ OR [(Vehicle Movements/Manner of Collision = 10) AND ((Direction of Travel $1=1$ or 5) AND (Direction of Travel $2=$ $2,3$ or 4$)$)] OR [(Vehicle Movements/Manner of Collision = 10) AND ((Direction of Travel 1=2,3,or 4) AND (Direction of Travel 2=1 or 5)) \}
116	Eliminate Parking Opposite Milepoints	Completely remove existing parking on one side of the roadway in the direction of the milepoints.	32	(First Harmful Event $=1$ or 4 OR (Vehicle Movements/Manner of Collision $=40-44$ OR [(Vehicle Movements/Manner of Collision = 10) AND ((Direction of Travel 1=1 or 5) AND (Direction of Travel $2=$

				Movements/Manner of Collision =10) AND ((Direction of Travel $1=6,7$ or 8) AND (Direction of Travel 2=1or 5)) \}
117	Eliminate Parking	Completely remove existing parking on the roadway.	32	(First Harmful Event $=1$ or 4) OR (Vehicle Movements/Manner of Collision $=40-44$ or 10)
118	Replace Flashing Beacon with a Traffic Signal	Replace an existing flashing beacon at an intersection with a traffic signal.	25	[Intersection Related $=1$ or 2) AND (Vehicle Movements/Manner of Collision $=10-39$)) OR (First Harmful Event $=1$ or 5
119	Install Overhead Guide Signs	Install overhead advance signing for unusual or unexpected roadway features where no signing existed previously.	20	Vehicle Movement/Manner of Collision $=20-29$.
121	Convert 2-way STOP Signs to 4-way STOP Signs	Provide 4-way STOP signs where 2-way STOP signs existed previously.	15	Intersection/Intersection Related $=1$ or 2
122	Install Advanced Warning Signals (Intersection Existing Signal, Flashing Beacon to STOP Signs)	Provide flasher units for in advance of an intersection where none previously existed.	10	Intersection Related $=1$ or 2
123	Install Advanced Warning Signals (Curve)	Provide flasher units for in advance of an intersection where none previously existed.	10	$\begin{aligned} & \hline \text { (Roadway Related }=2 \text { or } 3 \text {) } \\ & \text { OR (Vehicle } \\ & \text { Movement/Manner of } \\ & \text { Collision }=20-24 \text { or } 30 \text {) } \\ & \hline \end{aligned}$
124	Install Advanced Warning Signals and Signs (Intersection Existing Beacon or STOP Signs)	Provide flasher units and signs in advance of an intersection where none previously existed.	15	Intersection Related $=1$ or 2
125	Install Advanced Warning Signals	Provide flasher units and signs in advance of a curve where none previously existed.	15	(Roadway Related $=2$ or 3) OR (Vehicle Movement/Manner of Collision $=20-24$ or 30)
126	Install Advanced Warning Signals and/or Signs (Intersection Uncontrolled, No Existing Advance Warning)	Provide flasher units and /or signs in advance of an uncontrolled intersection where none previously existed.	20	Intersection Related $=1$ or 2
127	Install Advanced Warning Signals (Intersection Existing Warning Signs)	Provide flasher units in advance of an intersection where none previously existed. Advance warning signs already exist.	10	Intersection Related $=1$ or 2

128	Install Advanced Warning Signals (Curve - Existing Warning Signals)	Provide signs in advance of an intersection where none previously existed. Advance warning signals already exist.	5	IntersectiGu nurated = 1 or 2
129	Install Advanced Warning Signals (Curve - Existing Warning Signs)	Provide flasher units in advance of a curve where none previously existed. Advance warning signs already exist.	10	(Roadway Related =2 or 3) OR (Vehicle Movement/Manner of Collision = 20-24 or 30)
130	Install Advanced Warning Signs (Curve - Existing Warning Signals)	Provide signs in advance of a curve where none previously existed. Advance warning signals already exist.	5	(Roadway Related =2 or 3) OR (Vehicle Movement/Manner of Collision = 20-24 or 30)
131	Improve Pedestrian Signals	Bring existing pedestrian signal units into conformance with current standards.	10	Intersection Related =1 or 2

Roadside Obstacles and Barriers

Work Code	Description	Definition	Reduction Factor \%	Preventable Accident
201	INSTALL MEDIAN BARRIER	Construct a metal or concrete median barrier where none existed previously.	65	(Vehicle Movements/Manner of Collision = 30) OR [(Point of Impact $=04,05$, or 63) AND (Object Struck + 01, 03, 20-23, 29-30, 32-36, 39-40, $42,56,60,62 \text {, or } 63)]$
202	Convert Median Barrier	Remove an existing metal median barrier system and install a concrete median barrier.	40	$[$ (Point of Impact $=04,05,12$, 16 or 63) AND (Object Struck $=23,39,56,62$, or 63)] OR (Vehicle Movements/Manner of Collision $=30$)
203	Install Raised Median	Install a roadway divider using barrier curb.	25	(Part of Roadway No. 1 Involved = 1) AND (Vehicle Movements/Manner of Collision $=10,14.20-22,24$, 26, 28-30, 34 OR 38)
204	Flatten Side Slope	Provide an embankment side slope of $6: 1$ or flatter.	46	Roadway Related = 3
205	Modernize Bridge Rail and Approach Guardrail	Improve existing substandard bridge rail and approach guardrail to current design standards. Post spacing, end treatment and length of need should be considered. For length of need, if the existing length is less than 20% of the current design length, use W.C.	15	(Object Struck $=23,39-41$ or 56) OR (Bridge Detail $=2$ or 3)
207	Install Protection	Provide guardrail or concrete traffic barrier where none existed previously. Refer to W.C. 206 for improving existing guardrail and W.C. 208 for the installation of protection at bridge ends.	30	(Roadway Related $=2$ or 3) OR (Object Struck $=20-26$, $29-36,40-42,56-58,60,62$, or 63)

208	Install Protection at Bridge Ends	Provide guardrail, concrete traffic barrier or other protective system at bridge ends where no protection existed previously. Refer to W.C. 207 for installation of new guardrail and W.C. 206 for improving existing guardrail.	50	$\begin{aligned} & \hline \text { (Roadway Rc...... } \quad=2 \text { or } 3 \text {) } \\ & \text { OR (Object Struck }=20-26, \\ & 29-36,40-42,56-58,60,62 \text {, or } \\ & 63 \text {) } \end{aligned}$
209	Safety Treat Fixed Objects	Remove, relocate of safety treat all fixed objects within the project limits, to include both point and continuous objects. Refer to W.C. $210,211,212,213,214,215,216$, 217 , or 218 if the project includes only one type of fixed object. Guardrail should be coded separately.	55	$\begin{aligned} & \text { (Roadway Related }=2 \text { or } 3 \text {) } \\ & \text { OR (Object Struck }=20-26, \\ & 29-36,40-42,56-58,60,62 \text {, or } \\ & 63 \text {) } \end{aligned}$
210	Safety Treat Sign Support	Replace existing sign supports with breakaway supports. Refer to W.C. 217 for the installation of attenuation systems.	45	$\begin{array}{\|l\|} \hline \text { (Roadway Related }=2 \text { or } 3 \text {) } \\ \text { OR (Object Struck }=20-26, \\ 29-36,40-42,56-58,60,62 \text {, or } \\ 63) \\ \hline \end{array}$
211	Safety Treat Luminaire Supports	Replace existing luminaire supports with breakaway supports.	35	(Roadway Related $=2$ or 3) OR (Object Struck $=20-26$, 29-36, 40-42, 56-58, 60, 62, or 63)
212	Safety Treat Drainage Structures	Provide safety end treatments to crossroad and/or parallel drainage structures.	60	$\begin{array}{\|l\|} \hline \text { (Roadway Related }=2 \text { or } 3 \text {) } \\ \text { OR (Object Struck }=20-26, \\ 29-36,40-42,56-58,60,62, \text { or } \\ 63) \\ \hline \end{array}$
213	Widen Drainage Structures to Clear Zone	Widen existing structures to provide the desirable clear zone.	30	(Roadway Related $=2$ or 3) OR (Object Struck $=20-26$, 29-36, 40-42, 56-58, 60, 62, or 63)
214	Remove Signal Supports	Redesign signals to remove the existing supports from the median.	10	$\begin{array}{\|l} \hline \text { (Point of Impact }=04,05,12 \\ 16 \text { or } 63 \text {) AND (Object Struck } \\ =20-26,29-36,40-42,56-57, \\ 60,62 \text { or } 63 \text {) } \\ \hline \end{array}$
215	Remove Trees (4:1 or 3:1 w/recovery)	Remove trees from the clear zone. Consideration is given to the embankment slope rate and the clear recovery area gained after removal.	10	$\begin{aligned} & \text { (Roadway Related }=2 \text { or } 3 \text {) } \\ & \text { OR (Object Struck }=20-26 \text {, } \\ & 29-36,40-42,56-58,60,62 \text {, or } \\ & 63) \end{aligned}$
216	Remove Trees (6:1)	Remove trees from the clear zone. Consideration is given to the embankment slope rate and the clear recovery area gained after removal.	50	$\begin{aligned} & \text { (Roadway Related }=2 \text { or } 3 \text {) } \\ & \text { OR (Object Struck }=20-26 \text {, } \\ & 29-36,40-42) \end{aligned}$
217	Install Impact Attenuation System	Provide any of a variety of impact attenuators where none existed previously	60	$\begin{aligned} & \text { (Object Struck }=20,30,40 \text { or } \\ & 42) \end{aligned}$
218	Widen Bridge	Provide additional width across an existing structure, either by rehabilitation or replacement. Specify existing bridge width, existing approach roadway width and roadway type (2 lane, 4 lane undivided, etc.)	55	(Bridge Number is not blank) OR (Bridge Detail in not blank) OR (Vehicle Movements/Manner of Collision $=20,21$ or 30) OR (Roadway Related $=2$ or 3)

219	Install Curb-Control of Access	Installation of curb for an urban low speed design highway where no previous curb existed and the accident history indicates a control of access problem.	10	[(Intersection nclated $=3$ or 4) AND (Vehicle Movements/Manner of Collision $=10-19,20-29,33-$ 39, 40-44,)] OR (Roadway Related $=2$ or 3) IR (Object Struck $=20,22-23,26,29-36$) OR (First Harmful Event = 1 or 4)
220	Relocate Luminaire Supports From Median	Relocate luminaire supports from median (usually narrow) and place between outside curb and R.O.W. Refer to Work Code 211 for safety treating luminaire supports.	To be defined.	(Roadway Related $=2$ or 3) OR (Object Struck $=20-26$, 29-36, 40-42, 56-58, 60, 62, or 63)
221	Remove or Modify Barrier Curb	Remove or make traversable the barrier curb in front of existing guardrail or concrete traffic barrier.	30	(Object Struck $=21,23,39$, 41 or 56) OR (Vehicle Movement/Manner of Collision $=30$)

Resurfacing and Roadway Lighting

Work Code	Description	Definition	Reduction Factor \%	Preventable Accident
301	RESURFACING WITH MILEPOINTS	Provide a new roadway surface to increase pavement skid numbers on the lane(s) in the direction of travel of the milepoints.	42	(Surface Condition = 2) AND ((Direction of Travel 1=1) OR (Direction of Travel 2 $=1)$)
302	Resurfacing opposite Milepoints	Provide a new roadway surface to increase payment skid numbers on the lane(s) in the direction of travel opposite the milepoints.	42	(Surface Condition = 2) AND (Direction of Travel 1=5) OR (Direction of Travel 2 = 5))
303	Resurfacing	Provide a new roadway surface to increase pavement skid numbers on all the lanes.	42	Surface Condition = 2
304	Safety Lighting	Provide roadway lighting, either partial or continuous, where either none existed previously or major improvenents are beeng made. Refer to W.C. 305 for intersection lighting.	25	Light Condition = 3 or 4
305	Safety Lighting at Intersection	Install lighting at an inte		75

Pavement Markings

Work Code	Description	Definition	Reduction Factor \%	Preventable Accident
401	INSTALL PAVEMENT MARKINGS	Place complete pavement markings, excluding crosswalks, in accordance with the TMUTCD where either no markings or nonstandard markings exist. Refer to W.C. 402 for edge makking, W.C. 403 for pedestrian crosswalks, W.C. 404 for centerline striping.	20	(Road Related = 2 or 3) OR (Vehicle Movements/Manner of Collision = 21 or 30) OR (First Harmful Event = 3)

402	Install Edge Marking	Place edge lines where none existed previously.	25	Roadway Relucu 2 or 3
403	Install Pedestrian Crosswalk	Place pedestrian crosswalk markings where none existed previously. Refer to W.C. 114 for school zones, and W.C. 110 for pedestrian signal.	10	First Harmful Event $=1$
404	Install Center line Striping	Provide centerline striping where either no markings or nonstandard markings existed previously. Refer to W.C. 401 for complete pavement markings.	65	Vehicle Movements/Manner of Collision $=30$
405	Install Traffic Buttons	Placed raised nonreflectorized traffic buttons for improved visibility in daylight wet surface conditions. Buttons will be installed where no buttons existed previously. Refer to W.C. 406 for installation of traffic buttons.	30	[(Surface Condition = 2) AND (Light Condition =1)] OR (Vehicle Movements/Manner of Collision $=21$ or 30)
406	Install Raised Reflective Pavement Markers	Place raised reflective pavement markers for improved visibility at night and in wet surface conditions. Markers will be installed where non-existed previously. Refer to W.C. 405 for installation of traffic buttons.	25	(Surface Condition $=2$) or (Light Condition $=3$ or 4)
407	Install Sidewalks		20	First Harmful Event $=1$ or 5
408	Install Bike Lane		20	First Harmful Event $=5$

Roadway Work

Work Code	Description	Definition	Reduction Factor \%	Preventable Accident
501	Modernize Facility to Design Standards	Provide modernization to all features within the Right-of -Way to achieve current desirable standards. This includes work such as widening the travelway, widening the shoulders, constructing shoulders, flattening the side slopes, and treating roadside obstacles.	15	All
502	Widen Lane(s)	Provide additional width to the lanes(s). Refer to W.C. 517 if adding a through lane.	30	(Roadway Related $=$ 2 or 3) OR (Vehicle Movements/Manner of Collision = 12, 21, 23, 30 or $33)$
503	Widen Paved Shoulder	Extend the existing paved shoulder to achieve desirable shoulder width. Refer to W.C. 504 for constructing a paved shoulder.	12	(Roadway Related $=2$ or 3) OR (First Harmful Event = 4)

504	Construct Paved Shoulders	Provide paved shoulders to desirable width where no shoulders existed previously. Refer to W.C. 503 for widening paved shoulders.	15	(Roadway Related $=2$ or 3) OR (Vehicle Movements/Manner of Collision $=20,23-24$ or 30) OR (First Harmful Event = 4)
505	Improve Vertical	Reconstruct the roadway to improve sight distance.	50	$\begin{array}{\|l} \hline \text { (Roadway Related }=2 \text { or } 3 \text {) } \\ \text { OR (Vehicle } \\ \text { Movements/Manner of } \\ \text { Collision }=20-24,30,32 \text { or } \\ 34) \end{array}$
506	Improve Horizontal Alignment	Flatten existing curves. Refer to W.C. 507 for providing superelevation, and W.C. 508 for intersection realignment.	50	(Roadway Related $=2$ or 3) OR (Vehicle Movements/Manner of Collision $=20-24,30$)
507	Increase Superelevation	Provide increased superelevation on an existing curve.	65	$\begin{aligned} & \hline \text { (Roadway Related = } 2 \text { or 3) } \\ & \text { OR (Vehicle } \\ & \text { Movements/Manner of } \\ & \text { Collision = 30) } \end{aligned}$
508	Realign Intersection	Improve an existing intersection by partial or complete relocation of the roadway(s). Refer to W.C. 509 for channelization, and W.C. 506 for improving horizontal alignments.	To be defined	Will be determined from supplied diagram
509	Channelization	Install islands and/or pavement markings to control or prohibit vehicular movements. A sketch of the proposed channelization should be provided. Refer to W.C. 508 for intersection realignment.	To be defined.	Will be determined from supplied diagram
510	Construct Turn Arounds	Provide turnarounds at an intersection where none existed previously.	40	(Intersection Related $=1$ or 2) AND (Vehicle Movements/Manner of Collision $=12,14,18.20,22$, $24,26,28,29$, or 34)
511	Add Acceleration/Deceler ation Lanes	Construct acceleration and/or deceleration lanes where none existed previously.	10	[Outside 2 Lanes (Main)] AND [Vehicle Movements/Manner of Collision $=20$ or 21]
512	Entrance Ramp Modification	Reconstruct existing ramps to conform with current desirable standards.	30	[(Part of Roadway Involved = 2) AND (Vehicle Movements/Manner of Collision = 20)] OR [All Accidents on Outside 2 Main Lanes from 1/10 Mile Before Connection to $2 / 10$ Mile After Connection]

513	Exit Ramp Modification	Reconstruct existing ramps to conform with current desirable standards.	20	(Part of Roadway Involved $=$ 2or 4) AND (Roadway Related $=2$ or 3)] OR [(Part of Roadway Involved $=2$ or 4) AND (Vehicle Movenents/Manner of Collision = 10-39)]
514	Grade Separation	Construct vertical separation of intersecting roadways.	80	All

525	Covert to One Way Frontage Roads	Convert two-way frontage roads to one-way operation.	25	
526	Increase Vertical Clearance (Lower Grade)	Increase vertical clearance of a roadway underneath an overhead obstacle by lowering the roadway grade.	50	Object Struck = 43
527	Increase Vertical Clearance (Remove Structure)	Remove an overhead structure in order to increase vertical clearance.	95	Object Struck = 43
528	Construct Median Crossover	Provide crossovers in the median where none previously existed.	20	(Part of Roadway Involved = 1) AND (Vehicle Movement/Manner of Collision = 10, 14, 20-22, 24, 26, 28, 29, 34 or 38)
529	Remove Raised Median/Concrete Island	Permanently remove raised median/concrete island	35	Object Struck = 21 or 36
531	Install Jiggle Bar Tiles as a Shoulder Treatment.	Install jiggle bar tiles on the shoulder as a shoulder texturing treatment.	25	(Roadway Related $=2$ or 3) OR (Vehicle Movement/Manner of Collision = 30)
532	Texturize Shoulders (rolled in or milled in)	Install milled-in or rolled-in rumble strips along the shoulder.	25	(Roadway Related $=2$ or 3) OR (Vehicle Movement $=30$)

Appendix I

Summary of Accident Reduction Factors Used in Other States

Table 1. Summary of Accident Reduction Factors for Signing and Sigrals (Work Codes 101 $\mathbf{~ 1 1 8)}$.

Wericus If?					
Dexeriphon	D-tuixa	Retation Fater	Frenutio Asintat	Bet Much 3-thoonfarm	
Trutis sup 3ipre	मिक्रु)	30	Inieterisin Resuad		
Fehat Cantmeare					
	Mil	Find	Giver	Fitalyivy	PDO
	20ry ${ }^{16}$	6	$3{ }^{3}$	104	18
	60_{4}				
	1817				
Gurway dopilil wiy anj		mam^{2}	$6_{7}{ }^{4}$		
nethr minerleg top motrod		L ${ }^{2}$	$8{ }^{3}$	71at	
					${ }^{5159} 5$
	$4{ }^{4}$				Sa_{4} +11
Pritur futsertions	$\mathrm{CHOSO}_{3} \mathrm{SH}_{4}$				

Wulicode 16					
Degrothon	Defulitur	Reluiten Fata	Prevelabie tisident		
	Ppowe hatur unth, whete ablic cilied pmblein ues	*	diequm		
	All	Fat	Hut	Ftal 1	15
Finirgfative huth					
*iry	154.4.				
neris bfative cmum	$\mathrm{H}_{4,1 \mathrm{~K}_{3} \mathrm{H}_{4}}$				

Wert Cotella					
Cestratiay	Deliaitic	Forest	Armutie Acoler	Beakyat rolurion Eucte.	
	 		Wit be betimial fan wiffied In		
	Al	Fin	Thisy	Fitwour	100
	443E4				

Whatceng					
Desmigtur	Dention	Tediation Frem	Prentile Motert	Bethteh Soluctionfreion	
Ifsillinerseticif nuling Rucan	 	5	Irdeweten Edoce		
Stated Conieminsurs					
	\cdots	Fral	Induy	Fualfiny	P90
Hetingturige indersatis	425*				
		-			
				$7{ }^{4}$	44^{46}
				15me	$\mathrm{mb}^{\text {m }}$
Whe itturing hienatioss - - mrtal				43m ${ }^{\text {m }}$	frent

Table 1. Summary of Accident Reduction Factors for SLgnlig and SLgals (Work Codes 101-118)-Continued.

Wark Code 106				
Deseription	Definition	$\begin{array}{\|c\|} \hline \text { Reduction } \\ \text { Facter } \\ \hline \end{array}$	Frevenubile Accident	Hest Mutch Reduction Factors
Modernize Intersection Flaykung Beacon	located at an intersection, to athent desien standards	10	Intersection Related	
Relateed Countconessures				
	All	Frat	Iniuy	Fatalinjury,

Wark Cade 107					
Description	Derenition	Reduction Factor	Preventable Aecident	Best Math R Reductio	on Factors
Install Traftic Stgal	Provide a traffie signal where none existed previously.	28	Interxection Releted; Collizions at Angle, Same, or Opposite, Collision w/Pedectrian or Pedalcycliss		
Related Countumbaties					
	Al	Fatal	Injuy	Frabiniuy	PDO
Critil - now		-14 ${ }^{\text {ar }}$	20 Ax	$20_{\text {Ax }}$	- $-S_{\text {ne }}$
Enstill - new at chernelizated intersedion	42 L		42_{0}		43π
Install - new dif non-tharnelizated intersectiof	20 m				21 m
brubll - sewtron twoway stop.					
install - new red/yellow/İeen signal	32my				
brsall - new signal sud geomevic tevamp	$21_{\text {Az }}$	578	28×2	$30_{\text {ax }}$	$13_{1 \times}$
urstall . overhead agnals.					
intrsection - 4legged without channclization		$\left\|\begin{array}{\|l\|} 49 m^{n} \\ 1 \operatorname{man}^{2} \end{array}\right\|$	$\begin{aligned} & 12_{u T}^{16} \cdot 16_{\mu t}^{17} \\ & 24 \mu^{17} \end{aligned}$		
traltic sigrats/derites	$27 \mathrm{~mm} 3_{\mathrm{mt}}{ }^{\text {/ }}$				

Work Code 108					
Description	Delinition	Reduction Fictor	Preyentible Accident	Beat Math Reduction	on Factors
Luprove Trific Signals	Modemize existing intersection siguls to current design standands	22	Intersection Related : Collisions at Angle, Same, or Opposite; Collision W/Pedestrian or Pedalcyclist		
Refated Combtrnetsurs					
	All	Fatal	Injury	Estalinjury	PDO
12-inchleas					
edd muti-did controller					$30^{* x^{\text {P }}}$
improve loction of signal heads					30 $0_{4}^{\text {a }}$
install-gititional signal heads					$30_{4 / 4}$
install - back plates					30_{4}
instill- visors					$30_{4 x}$
medernize, anodify, or upgrade					
modify both signal and channelization	52 n .		77 m		$4^{\text {E }}$
modity sigual al chamelization intersection	$27{ }^{3}$				
modity signal at nonochannelization intersectien	27, ${ }^{3}$				
pretimed to ectuated					
revemped tignal	$9{ }^{\text {ar }}$	$0_{\text {at }}$	$33_{\text {柆 }}$	3_{47}	1138
revarmed sigrai wd geometric revamp	$40_{\text {AI }}$	$5 \mathrm{SO}_{4 \mathrm{I}}$	33nz	$3{ }^{3}$	$43_{n z}$
sigral phasing - improve umung	10^{2}, 129.10xr				
Sigual phasing - increase fowrince interval	$30 \times 2.3{ }^{3} 30 \mathrm{kF}$				
upgede pedestal notintith winst arm mount pretimed-existingl.7L	44^{40}			25^{403}	
upprade pedestal mounted ter mast am mount lertimed - LTL added	$8^{8 A_{40}{ }^{3 *}}$			87×0	
upgrade pedental mounted 10 mas onm moun: pretimed ano LT lane				$\begin{aligned} & 32_{m_{0}}{ }^{54}-52 \mathrm{va} \\ & \mathrm{~B}_{\mathrm{wa}} \mathrm{~m}, 25 \mathrm{man} \end{aligned}$	
Hegruling - redyellow/gernsigial ${ }^{\text {T }}$	26 mr				

Table 1. Summary or Accident Reduction Futorn for SIgning and Stgnals (Wort Codes 100-18)- Continued.

Work Code 119					
Descriplion	Detuition	$\begin{aligned} & \text { Reduction } \\ & \text { Finctop } \end{aligned}$	Preverable Actidet	Bet Mich Reductien Freceres	
Chsall Dxineticis	itull por monted detitetor b enombe gideme	30	Dantresel lighte or nol lipted		
Reciad Conntemearues					
	All	Ftal	Iniuy	Fealiniuy	PDO
Frituldelintios		44.4.3ix	$200{ }^{5}{ }^{5} 9 g_{2}{ }^{7}$	18.4	48
Clination of Erdye Einds					
Elination of Cima					
Celination ulfaizonal Cura					
Celinationol Shoudar	Mr				
Clication it Tryal section					
				394	$11_{51}{ }^{\text {N }}$
		10x, $5 \times$			Smin ${ }^{\text {man }}$
			$8 \mathrm{~m}^{\text {miz }}$		$8{ }^{82 \times 24}$
Thsthl Dilimewn - Endet Cindepess	Soc.				
		2_{5}^{4}	$2 n^{4}$	$8{ }^{2 \times 4}$	
	3 Sm				
Intall Wering Simsans Delifetion bn Cure	$2 x^{2}$			$4{ }^{49}$	
Theswation Lelindion	$1 \mathrm{~m}^{3}$				
Pasi. P limisurs					
Pail Manted Deliration					

Work Code 14					
Descripicn	Detimitan	$\begin{aligned} & \text { Reducton } \\ & \text { Fselor } \end{aligned}$	Preverable Acrida:	BatMach	on Frion
Insull School Zones	Plact shocl zones to inco vele siging andio pavementmaring sete :ons Existedpreviests	20	AIII		
Reiced Courizmessues					
	21	Fftal	Inimy	Patinizy	70
Thatill Sched Zon- - Sigming endor Strining	$2 \mathrm{mam}^{17}$				

Voricodilis					
Dexscripion	Sufinition	Red.cticn Facier	Preentable Actident	Bes MathR	dinfatiors
Eliminate Peving vihMMilppints	Completey remere existirg faringon. one tile of the racery in be diredion ot the milepains	32			
- Relate Comimiosucs					
	A	Eatal	lniuy	Farlinury	PPO
NTothing Ford					

Table 1. Summary of Accident Reduction Factors for Signing and Signals (Work Codes 101-118) - Continued.

Work Code 116					
Deerription	Definition	Reduction factor	Preventable Accident	Bot Match Fuct	uction
Eliminata Parking Opposite Milepoints	Completely remove existing parking on one siide of the rondway in the direction oppogeite the miltpoints.	32			
Related Countermeaqurs					
	All	Fatal	Lniury	Fatalinjury	PDO
Nothing Found					

Work Code 117					
Description	Dcfinition	$\begin{array}{\|c} \text { Reduction } \\ \text { Factor } \end{array}$	Preventable Accident	$\begin{gathered} \hline \text { Beat MatchR } \\ \text { Factor } \end{gathered}$	Reduction rs.
Eliminate Parking	Completcly remove existing parking on the roddway.	32			
Related Countermensures					
	All	Fatal	Injury	Fitiliniury	PDO
Change Froan Angle to Parallel Parking		$87 \mathrm{ws}{ }^{\text {3 }}$	${ }^{38} \mathrm{wi}^{\text {\% }}$		$40^{2}{ }^{\text {a }}$
Prohibit Parking					30 wa
Prohibit Parking Near Comers	$32 \mathrm{WA}^{9} \cdot 32 \mathrm{ma}$				$30 \mathrm{w} 4^{8.16}$
Restrit Panking Noar Drivewsy	$32_{\text {ma }}$				130×3

Work Code 118					
Description	Definition	Reduction Factor	Preventable Avcident	$\begin{gathered} \text { Bext Match } \\ \text { Fsti } \end{gathered}$	uction
Replace Flashing Beacon wiul a Traftio Sigual	Replace an existing flashing beicion al an intersection with a traffic signal.	25			
Related Countermeasures					
	All	Falal	Injury	Fatal/injury	PDO
Nothing Found					

Miscellameous 100					
	All	Fstal	Lnjury	Fstal/ajury	PDO
prohibit right-aut on red	$25^{\text {win }}$ \%				
canove Bigial mpports form mediun	$10{ }^{10}$				
remove mawarranted signal	100×1	0_{12}	10008	$100{ }_{2}$	10048
sigual phasing - right turn en red phase	$5{ }^{\text {w }}$	$30_{4}{ }^{\text {F/ }}$	$3^{3}{ }^{2 / 4}$		
warming/lashing - RR crossing		$5 \mathrm{fw}_{\text {\% }}{ }^{\text {Pi }}$	$23^{\text {w }}$ / ${ }^{\text {\% }}$		
waming/hashing - RR crossing * flashing lights replace signs	94 man	99\% ${ }^{\text {P/ }}$			
Prohibillef Tums	$90{ }_{\text {m }}$				

Table 2. Summary of Accident Reduction Factors for Roadside Obstarles and Bantern (Work Codes 201 - 221 .

Work Code 201					
Devaiption	Detrition	Reduction Factor	Preventable A eident:	Een Match Reduction Fuctorn	
Trutalt Median Barrier	Conituct metal or eonerete neclian bentier where none existed previously.	65	Het-to-Head oollivong, rehelo ariving object		
Refated Countmenure					
	All	Fetal	Ithy	Fatelivinuy	PDO
daxtle vided on wider mediun	H	85^{3}	$5 \mathrm{Sm}^{3 /}$		
gurdnin - 1 to 12 ft modimin	1				$28_{40}{ }^{5} \cdot-23_{4 /}{ }^{\text {b }}$
gundrail - 13 to 30 f median		$85^{46}{ }^{34}, 88_{4 \times n}$			30, $0^{3 /}$, $30 . x^{7}$
frurtruil - 31 6o 60t median			$5{ }^{4015}$		
inutall	$36_{\text {car }} 19_{\text {met }}$				
Intill betier it median on roadway >2 lanes	-53-4*			-61ya	
fremill beam berrier mimedian on rosituy 22 lares		$15 \times{ }^{\text {\% }}$	-30.829	[22**	19xa*
Irutall cible verray in modian on roadivy 32 laner		$36_{\text {Vin }}{ }^{\text {a }}$	-20 ${ }^{\text {m }}$	43 me	$40_{0 / 8}$
install concrete mb	$65 \mathrm{~K}^{3}, 6 \mathrm{w}^{\text {\% }}$		$61 n^{3 /} 100^{5}$	$60 \mathrm{wa}^{\text {F }}$	$10_{M 0}{ }^{\text {\% }}$
		90, ${ }^{\text {\% }}$	$10_{0}{ }^{\text {a }}$		104.4.
		$85^{4 y^{95}}$			$25_{4}{ }^{9}$
irsunll conerste mb replecius barcis		$50^{3 / 3}$			50, ${ }^{4}{ }^{\text {a }}$
intall concrete mb with end treatment		$6 \mathrm{Nax}^{\text {² }}$	40 wa		$150{ }^{\text {W }}$
madian barrian		$60_{014} 38_{\text {0r }} 30_{2-16}^{16}$			
		$48_{\text {Mr }}{ }^{2}, 91_{\text {LT }}{ }^{18} \cdot 56 \mathrm{Mr}$	$6 \mathrm{NT}^{17} 1 \mathrm{Im}^{2}$		
newtyexdod		$60_{A z} 3^{3} \mathrm{E}_{\text {Wh }}{ }^{\text {a }}$	26*7. 104	$2{ }^{28} 8_{\text {A }}{ }^{7}$	19, ${ }^{7}{ }^{7}$
Lnutall Concrete Barrier To Prevent Left Tums		90 wn	$10{ }^{2}$	$60 \mathrm{wa}^{\text {ar }}$	
Greall Modina Barrier	35 cm 40 ma				

Worl Cade 302					
Dacription	Definition	Reduction Factor	Frevenuble Atcidm	Bext Match Reduction Factory	
Convert Median Bamief	Remove an existing metal metian bamer watem and coullle lencrete median bartier.	40	Head-6-Hegd colliniori		
Rellated Coumterneatura					
	Al	Fatal	Injury	Fatalimiery	PDO
nowhery			$26_{A 2}{ }^{7} 10 w^{6}$	$28{ }^{\text {a }}$	39mz
cyegnde to concrete nib	$44 \pi^{31}$	60^{34}	$60_{7}{ }^{28}$	160n ${ }^{2}$	
oatert to modian barfire (rempere w-beample benien	$40.4{ }^{3 /}$				

Work Code 203					
Description	Defintion	Reduction Factor	Preventable Accident	Bext Match Reduction Factorn	
Eutall Reised Median	Insiallicrodway dider unge basrier curb	25			
Related Comintermeasuret					
	All	Fatal	Injury	Faualinjuy	PDO
frstall Printed or Ratad Median				10×9	$10.0{ }^{664}$
Intall Puinted or Raised Median To Frevent Lef Tums	$10^{6,3}$	$90.8{ }^{\text {\%ff }}$	$10^{4 / 4}$	$10.4{ }^{\text {ma }}$	$10 e^{\text {chem }}$

Work Code 204					
Dexription	Delinition	Reduction Factor	Preventablo Actident	BerkMatch	Refuction Pactors
Fatien Side Slope	Provide an embarkatent nide alope or $\mathrm{y}=\mathrm{E}$ ef thater	46	Off roaiway beyond whoulder		
Related Cequtemeastras					
	311	Fatal	tmuy	Fatavires:	PDC
flatten side slope				-12	2 ng .20 mat
natten tideslope $=$ from 2.1 to 41					
hatten sideslope , from 2 3 to 6.1					
nalten sideslope - from 3.1 to 4.4	Rum-oll road $6_{M 10}{ }^{6.3} \cdot 6_{W A}{ }^{\text {m }}$. 11				
hatten wifevope - from 3.1 to 6.4	Rurotiroti $1440{ }^{43} \cdot 14 \mathrm{n}^{4.10}$				

Table 2. Summary of Accilent Reduction Factors for Radside Ohstacles and Barchers (Work Cedes 201-221)-Continged.

Wars Codr 304					
Dutarition	Defteition	Redixalion Yattor	Prevenitblu detident	EsatM	th Fouxtion Fretx
Mocimine Erioperil and Apyowch Guardral	Fuprove existing subtandurl Vidigatil end yperoash geardalil to curent defintwotart, Pent spocres End teabent wad ergth af reed hhowld be conviderd	13			
Relued Coinilemeatime					
	Al	Fatil:	Thity	Fatalungy	PDO
cutil ordighty miverts brideaming	20 ry Collicion woridse or culvers 32try	$61{ }^{4}{ }^{9 *}$	45×4		-61 $\mathrm{w}^{3 /}$
rosdarimo nill to deien thedardiuygeis	 	1004x	$50_{0} 7$	$1{ }^{4} x^{3}$	14 nz

Wark Code 206				
Deaciption	Defilition	Ruduction fatiot	Praventeblit Acxidest	BetMaxhreckution Ficine
Tuprote Ountrill to Eeing Standads	Brny ecising wibs zandrig gimbail nts confromate with surenn deaipn tandeay	?		
Relatid Comeameagies				
	All	Falal	Lupy	Fualority 1 PDO
Sidiosestinenit	$\mathrm{O}_{3}{ }^{3 i}$	$55_{4}{ }^{\text {m }}$	$2 \mathrm{n}^{14}$	
	Sher Runnofl ficed 44 Callisina whived ebjec: 16 wi			
road dige pumdal numillutrowe	Ing			
teal ferduai end eremoturs dwut		${ }^{551}{ }^{2}$	${ }^{25} \mathrm{M}^{2}$	154s ${ }^{\text {M }}$
begrateicxended		9 9x	$13_{3 / 2}$	$13_{3}{ }^{7} \quad 16{ }^{15}$

Werk Code 3010					
Demription	Definition	Rodution Factor	Preventble Acident	East Math	Rectuction Pution
Intall Prxation a mbou End	or other proteative yatem ai bridye ends whereng protecian exated pevinuly	50			
	All	Estal	Hiury	Fitalitiay	POO
brice med gumdrul					-100909*-1104**
gumarit trusiom totindge end		75wn ${ }^{3}$	56.4 and		
watall tridg mppond mil exrieticme				$50 \mathrm{w}^{\text {a }}$	33**

Work Cade 207					
Desicriptist	Defutition	Reduatian Factor	Preventabla Ascident	Ees, Mach Reduction Fotos	
Stfety Treal FeredOtiecs	Remore, refcate of wifly tecit, all fixed obete within tie project litetisg to anlude bethporn nd continuour jobjactis.	55			
Heliated Comblmen ites					
	All	Fatal	Thuy	Fasidhiuy	F00
tremitary y uility polen	$0_{\text {AL }}, \mathrm{O}_{\mathrm{p}}$	$40_{\text {nt. }} 40_{\text {ma }}$			
nodify norbbrekkway object withn 30 I.	25ca				
relostie Exad objects	$\text { Colisixiwfared ofect of } \mathrm{n}_{n} \text {. }$				
rilombe utity poe efsat immiond fron 5 bo 10 a					
riosatefremove Exed obfect	85-95en				
Finve fixd ebjests			$15_{41} 19{ }^{2} 150^{\mathrm{m}}$. $2_{\mu F}{ }^{1 \prime} 15_{M 0}{ }^{34}, 20_{n}^{24}$		
trinver obstaciefyereation	6caz ${ }^{7}$, Rinoffroad: $71 y^{7}$	0_{42}	S3 ${ }^{\text {a }}$	58^{2}	64×2
remove obstacles fon cui tope		$35^{\text {mata }}$	1 hwat		50^{49}
romove obstacles San etisting teep ilope		$14 y_{4}^{\text {ar }}$	$10_{\omega_{s}}{ }^{\text {9ex }}$		-18 ${ }^{\text {vix }}$
renowe dobataces fon enfite stege ilspe		25wn	$23 w_{4}^{*}$		-404*
fromove utility poles			198.		Onst
remove, rebeate or stfeys trat obyects whin olear 30 n	Fixat olycet 55011				
roadids clear zose recer chat $=$ mid 5 ti	Fixed olyent $13{ }^{3} 0^{22}, 12 n^{n t 19}$ 				
	Freci object $25_{\mathrm{Mg}}{ }^{4 i}, 25_{\mathrm{F}_{\mathrm{A}}}$ 				
	Fixed object $35_{\text {mo }}^{\text {4t, }} 36 \mathrm{wa}$ 				

Werf Code 210					
Description	Defintion	Ieduction Ficiof	Prevertablo nocident	West Matel Reduction Featory	
Safty Treat Sign Support	Replice exuring 3in suppors with breala way supronts.	45			
Related Courtemensuits					
	- All	Fatal	- Inury	Eathmay	PDO
Bretkrway shax					
breakaixay sigu or tigil supperts.		103_{4}		Sum.	$\mathrm{Cuk}^{\text {/ }}$
brakamy mullaigh		70wa ${ }^{\text {\% }}$	$3^{5} \mathrm{wa}^{4}$		-12ws
conient stuanic lo treakaway	3515				
nafty-iren sign rupporta					

Thble 2. Summiny of Accldent Reduction Factons For Romdide Obitnclev and Barrlern OVork Codes 201 - 221 . Contlnued.

Work Codetil					
Deseription	Defurition	Reduction Flator:	Preveratable Accident	Denk Maich	Redoction Pectins
Gofyy Trout Luminnite Support	Replice exinting luminaife nupporte with brealaway mapport:	35			
Relaled Countanemirat					
		Fina	Enimy,	Fitiomity	PDO
brekavay digur of light mippoth		$100 \mathrm{~m}^{6}{ }^{\text {a }}$		30 ma	$0^{\text {max }}$
convert ofepefo to breakwey.	$33^{3}{ }^{\text {a }}$				
	24 ca				

Work Code 112					
Description	Defution	Reduction Fweror	Preventibla Acciodert	Beat Mateh	ion Fuctor
Safuty Treal Driinuge Strecture:	Phovide eflofy end reatmento to crownead and/or perillel trainge fructure:	60			
Related Comptemeanurea					
	All	Fital	hary	Futa/iniury	PDO
Prademise to derign tundatis	$30-2$				
efoty trat momendyeralle	160 $0^{\text {at }}$				

Work Code 21 I				
Deneription	Deflinution	Reduction Fector	Proventible Aceident	Sen Math R eduction Fation
Widen Drinnge Structuret to Cleur Zone	Widen exiring rencturer to provite the 	30		.
Related Comutermesurail				
	A	Fula	Lniusy	Fata/ Mive 1, PDC
drainge stachure extenvions	136. $5^{\text {7 }}$	18_{12}	Inaz	$33_{e^{4}}{ }^{\text {a }}$ - $38_{\text {A }}{ }^{2}$
widen dringze fracture to clear zone	$3047^{\text {k }}$			

Whercody 14					
Devictiption	Definiter	Reduction fustor	Preventable Actident	Bet Maich	an Fincton
Rempve Stigul Supperty.	Rederign nignali to rentere the existing nepporte from the median:	10			
Talated Countemesure					
	AII	Fitid	Eniury	Fatalifivy	PDO
Notains Found					

Wort Contil 215					
Dencription	Deturition	Reduction Fecter	Preyentult Acridemit	Beet Matoh	Reduction Fuctorn
Remove Troes (4, © 314 whesowery)	Remove tece from the slefr zonte. Consideration in given to the ombantoment alepe mate and the clear revovery wat gijed ofer renoval	10			
	All	Fital	İiury	Frovinure	PDO
Eemove treer	130972	$1004 x^{2}, 659 x^{2}$	$1000 x^{9+} \cdot 3 w^{\text {m }}$		
frmeve yers - 411 of 311 recovery zane	$10_{\text {gef }} 16$				

Wori Code 216					
Dearription	Detween	Reduction facter	Peventmbla Acciderit	Bet Match	Reduction Fations
Eemaxt Treten (6.0)	Rempove bremform by: fizar moneConmederation bu guven to the fecovery aref gained after rebroval.	50			
Related Counteminaruxt					
	盛	Ftral	liniur	Fatalinury	PDO
remova treas	$30 .{ }^{2}$	$1000 x^{\text {h }}$, $63 \mathrm{~m}{ }^{\text {m }}$			$309 x^{2}+5 x^{8}$
remove trete, 6it reeovery zom	$\mathrm{SO}_{2 \mathrm{FH}}{ }^{4}$				

WorkCode 217					
Detription	Defmition	Teduetion Fmeloc:	Proventshle Aceident	Beat Matek Restuction Featory	
Lamell Irppet Attmantionsymem	Provide miny ta wnify of impent ettenumion vitere nose exinted [pawiouly	60			
Seluerd Countemeterta					
	AII	- F FM	triory	Ftalinime	PDO
	14^{4}	$77_{\text {mex }}$	60×8		-300940
inpect menuntion inytem If					$36_{n-7}^{7} y^{20_{n} x^{2}}$
Sutarl mand-filed cell		$75 \mathrm{~m}{ }^{4}$	60van		
fircten teel berrsts		75 ma	$60 \cdot{ }^{3}$		50045
groblil witer filled onvid nuhion		$78 \mathrm{ma}^{3}$	604.a ${ }^{\text {\% }}$		[500) ${ }^{\text {a }}$

Work Code 218				
Huectiption	Detiniont	Reduction fuctor,	Preventibie Accident	Beat Match Reduction Fuctory
Whien Bridge	Provide additiond with bryou en oxirting otrueforv, either by rehabilitaion or trpacement	53		
Related Countermearuet				
	AII	Thut	truary	Faturing I PDO
Nothing Found				

Work Eodetit					
Dexcription	Defontion	Reduction Factor	Preventable Accident	Bert Match	onf Fatery
Relocmbe Luminuire Supporte from Median	Reloctite hamirmire nupporte from median (crunly nartow and place between outride curb ind ROW.	-			
Related Countematanire					
	All	Pmeante	Initur	Fitalinjury	FOO
Notbint Tound					

Work Code 21 I					
Decription	Definition	Reduetion Fu-tor	Preventable Ascident	Benturch Reduction Futors	
Remove or Monify Bartier Curb	Rensove of inate triveryable the berrien uthe n font of exikut guardrail or concrete traffic bemier.	30	\%		
Axtined Counternexment					
	All	Fatal		Feationory	F\$0
Nothing Pama			-anomy		

Hexalfneous 200					
	All	Fex	Injury	Fialinuor	PDO
		90-4.4.	$60{ }^{\text {ent }}$ \%		1000xt: $600^{4} *^{4}$
uriall median and shoulder pier protection		$90 \%{ }^{\text {ax }}$	60wn		
insall protection at twin-britge median opening	30cen, 500×1				
cetrofic curbe with bertior		$75{ }^{\text {m }}$	7590		
Rore ingrovementi	39,				
inctulforprove median berrier nexr gort xrea	17 mex				S6,
	34 ${ }^{\text {r }}$				
remmevil of protection of fixed objocte	$7^{\text {mF }}$				
clear sare arem			$40 \mathrm{mex}+10{ }^{2}$		

Work Code 303					
Description	Definition	Reductior: Factor	Preventable Accident	Best Match Red	ucton Factors
Resufficing	Pievidea new rod way sufface to increase pivement skid numbers on alt he lanes.	42	uct suface conditions		
Related Countemeasiurs					
	All	Fatal	Injury	Fatallnjury	PDO
add upphas ent coat					
delickung roed at intersection (Dense Giction coumse mixturc)	Wes: 71 WA ${ }^{\text {? }}$				
grove - longitudinal	24^{4} Wet: 53 m				
grove - paralle to centertine					
Grove - shoulder	$18{ }_{3}$	$15_{A z}$	$18 / 8$	$18_{A 2}$	
grove to preven thydroplaning	$21_{\text {ch }}$ Wer: $42_{\text {cha }}$				
install ACP ovelay	$21_{\text {c, }} 22_{1 w_{A}}{ }^{\text {a }}$				
overlay		$\begin{aligned} & 2_{a z a} 20 \mathrm{w}_{\mathrm{A}}{ }^{2} \\ & \text { We: } 61_{\mathrm{Nz}} \end{aligned}$			$\begin{aligned} & 13_{, 2} 26 \sigma_{W_{A}} \\ & W_{\text {el }} 43_{A 2} \end{aligned}$
Ftulfice curve w/skid resitiant overlay fimprove suberclevation	Wel: 51 mo				
resurfaing		46.18	$45^{3}{ }^{3}$		
resurfacing and superelevation	$28_{\text {m }}$ Weti $5 \mathrm{~S}_{\mathrm{Mr}}$				
Tesurficing w/ ppregraded mix	$75_{\text {wh }}$ Wet: 91 NY				
resurfacing w/ skid reeistant pavement	8\%y War: 35_{W}				
raurfacing w/ Verglimi	31_{3}				
ssw conrete					
3kid resistance - deslicking		$15_{R}{ }^{3}$	$15_{7}{ }^{36}$		
stid resistance - pavement groving		$12{ }^{\text {3 }}$			$9_{R}{ }^{\text {f }}$
skid remistance - scal cost	Wet: 19 ${ }_{\text {d }}$				
skid testment w/overlay		$\begin{array}{\|l\|} 30 \mathrm{mr}^{3} \\ 17 \mathrm{grf} \\ \hline \mathrm{ma}^{29} \end{array}$			
teat pavenent with resin bausite	40 ${ }^{\text {a }}$ "				

Table 3. Resurfacing and Roadway Lighting (Work Codes 301-05) - Continued.

Work Code 304					
Description	Definition	Reduction Factor	Praventable Accident	Best Math	educlon Factors
Safty Lighing	Providd roadway lighting, either patial of continuous, where eifher none existed previously or major improvements dre being made.	25	light conditions darkness		
Related Countermeasures					
	All	Fatal	Injury	Fatalinjury	PDO
bridge	50^{4} Nighte $50 \mathrm{w}_{4}{ }^{\text {a }}$				
bridge approaches					
bridge underpass					
croswalks	$50_{\text {wh }}{ }^{\text {St }}$				
gratal		0ar Night: $100{ }_{\text {a }}$	8 8i Night 39at	$8{ }^{2}$ Night: 420	$23_{8,}$ Night: 23×2
interchanges		41 man	16 ma	$15 w^{\text {g }}$	$20_{4 i}{ }^{\text {H/ }}$
RR crossings					

Work Code 305					
Description	Definition	Redution Fector	Preventable Accident	Best Math Redicton Factors	
Safety Lighting at Intersection	Install lighitig at an indersection where cither none ecisted previously or major improventens are proposed.	75	light conditions - darkness		
Related Comemeasures					
	All	Falal	Injury	Fatal/njury	PDO
intersecions					
inlersections - 3-168	Night $699_{\text {mo }}{ }^{4}, 699^{\text {\% }}$ 94				
interseclions 4.4 kg 2 2 -lane					
interseclions -4-leg. 4 -lane	Night: $62 \mathrm{MO}, 62 \mathrm{Wa}^{62}$				
intersections - improue	$50_{C A} \mathrm{Night:} \mathrm{SO}_{5}{ }^{\text {a }}$				
inlersections - new		$73^{\text {m }}$	$92{ }^{\text {mb }}$		

Table 4 - Ravement Markings (Work Ccdes 401 -406).

Wark Cofie 40					
Description	Defrution	Reduction fator	Freventate Accideni	Bust Mateh Redution Facloz	
[fund Pavemera Marking	Ftacs ccimplet pavemeal marting, excluding पutswalks, in acoudanet wih the TMUTCD where either no mardinge or nonslandard martings exis	20	off roadwy, or sham or opp. dir going staigh, OR tol. w/ train		
Belated Couniemagues:					
	A	Fatul	tinury	Fatal/njuy	PDO
Supiping	$\begin{aligned} & 2_{\mathrm{Mf}} \mathrm{ROR} 2 \mathrm{~S}_{\mathrm{cs}} \end{aligned}$				
Add stiping on 22 Foot Putement	$36 x^{19} \cdot 37 \mathrm{xt}$, 37 mt				
Add Puvement Maiking' at Rainnd Crusites				$20{ }^{\text {w }}$ m	
Charnelization Rauemert Meitings				-2ns ssimi $0^{\prime \prime}$	$\begin{aligned} & \text { lee SSMant } \\ & 33_{\mathrm{hi}} \\ & \hline \end{aligned}$
General Pavement Markingr			67 n		71_{n}
Thsud Syiging and Stiping Conbintion	$24.4{ }^{9}$	${ }^{27}{ }^{\text {w }}$	$26 \mathrm{wa}^{\text {/ }}$		
Tnsal/Tmione Pavement Marking	$20 \cdot 6$				
Land User Prement Arows	$30_{3,2} 30_{0}$				
Puemeat Marking		$\text { - } \ln _{A 2} \mathrm{ROR} \mathrm{D}_{2 z}$ Train: 1010 a			
Themroplastic Pavemen Marking	14.w				
Therroplasif Paventen Naling	56.8				
Themoplanith Pabriedt Mankings Spot Losations	22.80 ${ }^{4}$				
Trangerse thiping	15, ${ }_{0}$				

Table 4 - Pavement Markings (Work Codes 401 -406) - Continued.

Work Code 403					
Description	Definition	Reduction Factor	Preventable Accident	Best Match R	on Factors
Install Pedestrian Crosswalk	Place pedestain crosswalk markings where none existed previously.	10	coll w/ pedestrian		
Related Countemesasires					
	All	Fatal	Injury	Fata/Injury	PDO
install crosswalk					

Work Code 404					
Description	Definition	Reduction Factor	Preventable Accident	Best Math	educten Fictors
Lristall Centerline Striping	Provide centerline striping where either no markings or nonstandard markings existed previouslv.	69	two vehicles going straight, opp. dir.		
Related Countermeasures					
	All	Fatal	Injury	Fatallinjuy	PDO
Add Centerline					$\mathrm{SF}_{\mathrm{F}}{ }^{\text {e }}$
Add Centerline + Edgeline					
Add No Passing Stripe					
Center Double Yellow					
Continuous Left-Tum Lane	32m				
Install Centerline on Winding Sections	$28 \mathrm{~m}^{\text {m }}$				
Install Centertine Striping@ Crests on Vertical Curve					

Table 4-Pavement Markings (Work Codes 401-406) - Continued.

Work Code 405					
Descripion	Definition	Refiction Factor	Prevenuble Actident	Best Mach Reducion Rictors	
Instal Trafic Butan	Place raised nonreflectorized traffic buttons for improved yisitility in dayligh wel surface conditions. Butrons will be installed were no butions exisied previously.	30	wict and daylight cond. OR sclamin or opp. dir. going straight.		
Relaticountrmeames					
	All	F3tal	Lijuy	Fala/\jury	PDO
Raised Pavenen Markinges		164, SSISam: $100_{2 z}$ Ssisam and Head-on: 40 AZ		$12_{2,}$ SS/Sam: 7_{12} SSISam and Head on: $-4 a z$	

Wark Code 406					
Desscriplion	Defintion	Rediction Fathe	Preventable Accident	BetMitch Reductorn Factors	
Install Raised Reflective Pavemend Markers	Place ruised reflecine pavemenin malkers for improved visibility at night and in wet surface conditions. Markers will be ingalled where none cxised previously.	25	Wer cond OR dark ligt cond,		
Relaiet Countmiesures					
	All	Faul	Injury	Faulinury	PDO
Instill Reflectorized Triffic Buttons					
Fustal ReflectorizedRaised Ruenent Mankings				3 wn	${ }^{5}{ }^{\text {a }}$
Reflectoized Guide Marking	$30 n_{4}^{4}$				

Table 5 Roadway Work (Work Codes 501-525).

Work Code 501					
Description	Definition	Reduction Factor	Preventable Accident	Best Match Reducton Factors	
Moderuize Facility 10 Design Standards	Provide modemization to all features within the Righ-of-Way to achieve curtent desirable slandardslincludes work sucth as widening the travelway, wideaing the shoulders, constructing shoulders, fattering the side slopes, and treating madsite onstacles)	15	811		
Related Countermeasures					
	All	Fatal	Injury	Fathlnjuy	PDO
widen travelway, widen shoulder, construct shouldet, flatten slopes, and teat rosdside obstacles	$15 \mathrm{mf}^{18}$				

Work Code 502					
Descriplion	Definition	Reduction Factor	Preventable Accident	Best Match Redueton Factors	
Widen Lanes	Provide additional width to the lane(s).	30	Off roadway		
Related Countermeasures					
	All	Fatal	Injury	Fatallijury	PDO
lane	$5^{56}{ }_{\text {N }} \mathrm{ROR}: 49^{2}$	$\begin{aligned} & 58_{A Z} \mathrm{ROR}: \\ & 100_{A Z} \end{aligned}$	S7 7_{12} ROR: 35_{12}	$\begin{aligned} & 57_{x i} \mathrm{ROR}: \\ & +\mathrm{H}_{\mathrm{A}} \mathrm{a} \end{aligned}$	$\begin{aligned} & 54_{a z} \text { ROR: } \\ & 54_{k z} \end{aligned}$
lane - add 1 foot to boh lanes	ROR: $12 \mathrm{MO}, 12_{\text {was }}$ \%16				
lanc- - -idd 2 feet to both lanes	ROR: 23 ma: $23 \mathrm{wa}^{\text {\%16 }}$				
lane - urban midblock		87 ma	$38 \mathrm{wax}^{3 / 8}$	$\begin{aligned} & 30_{\mathrm{ws}}{ }^{\text {git } 10} \\ & 30_{\mathrm{ws}}{ }^{\text {sh }} \end{aligned}$	$40_{\text {W/ }}{ }^{\text {7 }}$
lane/shoulder widening					
pavement widening		$\begin{aligned} & 87_{\mathrm{MT}^{16}}^{16} \\ & 81_{\mathrm{MT}}{ }^{16} \end{aligned}$	$38_{\text {mI }}{ }^{16},-9 \mathrm{mI}, 14{ }^{16}$		
pavement widening w/ no lanes added	42, Y				
travelway	$28_{\mathrm{ch}_{\text {d }}} 28_{\mathrm{f}}{ }^{\text {3e }}$				
truelway from 10 feet	42_{MY}				

Table 5-Rowarwy Work (Work Coder 501-525) - Continued.

Work Code 503					
Description	Definition	Reduction Factor	Preventable Accident	Best Match Reducton Factors	
Widen Paved Shoulder	Extend the existing payed shoulder to achieve desirable shoulder with.	12	off roadway OR coll. w parked car		
Related Countenneasures					
	1 All	Fatal	Injury	Fatal/njury	PDO
lane/shoulder widening	$20_{\text {AL }}, 20_{\text {di }}, 20^{\mathrm{Ky}}$				
shoulder	$\begin{aligned} & S_{\mathrm{CA}}, 17_{\mathrm{NV}}{ }^{4}, 12_{\mathrm{MT}}{ }^{12}, 17_{\mathrm{fl}}{ }^{36}, 57_{\mathrm{NJ}} \\ & \text { ROR: } 60 \mathrm{NZ} \end{aligned}$	$\begin{aligned} & 12 \mathrm{FL}^{\mathrm{f}}, 48_{\mathrm{R} 2} \text { ROR: } \\ & 25_{\mathrm{Az}} \end{aligned}$		58nz ROR: 54×2	$\begin{aligned} & 20_{\mathrm{R}}{ }^{2 \mathrm{f}}, 57_{\mathrm{NI}} \\ & \mathrm{ROR} ; 65_{N} \end{aligned}$
shoulder - add 2 feet to both sides	ROIR: $13_{\text {ma, }} 13_{\mathrm{wh}^{\text {s.10 }}}$				
shoulder-add 4 feet (bike lane)	$\mathrm{SS}_{\text {g }}$				
shoulder - add 4 fect to both sides	ROR: $25_{\text {mox }} 25_{\text {wn }}$ \%100				
shoulder -add 6 feet to both sides	ROR: $35_{\text {ME1 }} 35_{\text {wh }}^{\text {d. } 10}$				
shoulder - add 8 feet to both sides					
shoulder - increase to full width (122.)					
shoulder - urban midblock parked carsheing parked	$5_{w_{A}}{ }^{\%_{1}} \cdot 2_{w_{d}}{ }^{9}, 29_{w_{A}}{ }^{9}$	$49 w^{94} \cdot 21 w n^{9}$	$20_{w_{A}}^{98} \cdot 11_{w n}^{\text {gi }}$		$0_{\text {wA }}{ }^{\text {n }}$
shoulde. - widen to 28^{\prime} road widh	$16_{w 4}{ }^{9}$	$69{ }_{3}{ }^{\text {a }}$	$30^{\text {wi }}$		
shoulder - widen le 32^{\prime} road widh	$35_{64}{ }^{3}$	${ }^{3} 3 \mathrm{wa}^{9}$	$17_{64}{ }^{88}$		$44 \mathrm{max}^{38}$
shoulder * widen to 40 road widh	$29^{4{ }^{\text {a }}}{ }^{\text {9i }}$	$29^{\text {W/ }}{ }^{\text {\% }}$	$29 \mathrm{ma}^{98}$		$31 \mathrm{wn}^{\mathrm{s}}$

Work Code 504					
Description	Definition	Reduction Factor	Preventable Accident	Best Match Redution Factors	
Constnet Paved Shoulders	Provide paved shoulders to desirable width where no shoulders existed previously.	15	offroadway OR coll. w/ parkedcar		
Related Countermeasures					
	All	Fatal	Lnjury	Fatal/nury	PDO
shoulder	$20_{\text {AL }} 20 \mathrm{KY}, 201 \mathrm{D}$				
stabilize shoulder	$28^{64}{ }^{\circ}$				

Table S-Roadwg Work Mork Cotes 201-525) - Continued.

Work Code S05					
Desenption	Defintion	Reduction Faclor	Preveribile Aecident	BestMatch	Reducton Fictors
Improve Vertical Aligment	Reconstruct the roadouy to improve sing tistance.	30	off roacway		
Related Countermeasures					
	, All	Fital	Lfitur	Fala//njury	PDO
change vertical alignment					
change wor and vert aligement				$55_{A 2} \mathrm{ROR} .69 \mathrm{Az}$	$\sqrt{67 n} 42_{A Z} \operatorname{ROR}$
change hor, mider vert aligument	40×1				
uiptove vertical curve	$45140{ }^{34}$				
inprove sight divtuce		$\begin{aligned} & 57_{\mathrm{MT}}, 100_{\mathrm{MT}}{ }^{\mathrm{TL}} \\ & 35_{\mathrm{MT}}, 64_{\mathrm{Mr}}{ }^{2}, \\ & 0_{\mathrm{hz}} \end{aligned}$		$s_{A z}$	8 mz

WorkCode 506					
Description	Defintion	Reduction Facior	Preventille hecident	Best Mateh	Reducten Fictors
furave Honcontal Aligament	Flatten existing curves	50	off toadway		
Refated Countermeastres					
	Al	- Fibl	Indury	FabManimy	PLO
chate hoizontal aligumant		$25_{\text {mt }}{ }^{\mathrm{k}}$	$29 \mathrm{~ms}{ }^{\text {be }}$		
fhange tom and veri aligumen		$\begin{aligned} & 11_{\mathrm{NT}}{ }^{\mathrm{k}} \cdot 69_{\mathrm{Mt}}{ }^{13} \\ & 4 \mathrm{~m}_{\mathrm{NT}}{ }^{2} 33_{\mathrm{AZ}} \\ & \mathrm{ROR} 33_{\mathrm{AZ}} \end{aligned}$		55az ROR: 69az	$\begin{aligned} & 37_{\mathrm{n}}, 42 \mathrm{n}, \mathrm{ROR:} \\ & 62_{\text {az }} \end{aligned}$
change tiof andfor vert aligmment	Cl_{4}				
curve reconstruction					
refluce sharpiess df curve for hor cuve. from 10 to s degrees					
reduce shaphess ot curve for hoE cuve : Gom 15 to 3 dcmes					
refuce shatpness of earve for for chive from 20 to 10 degees	$48_{\text {wo }}{ }^{6}, 48 \mathrm{v}^{\text {s }}$ dil				

Wort Code 507					
Description	Defrition	Reduction Pactor	Preventide Aceldent	Best Mate	Fictors
Inerease Superelevation	Provide inereased supecteatition on an existing curve.	63	of coadwa OR two wh. graing straight cep. ir.		
Related Countmentres					
	All	Fanl	Injuty	Fatalinimy	PLO
emrestionprove superclestion					
apere superelevation \& reset tot carve s skid-resistant overiay	Handone 86me'				

Table 5 -Roadwzy Work Work Coder 501-525), Coatinued.

Wart Code 508					
Description	Defrition	$\begin{aligned} & \text { Reduction } \\ & \text { Factor } \end{aligned}$	Preventable Asciden:	Besl Match Reduction Faciors	
Reslign Intersestion	Inprove an existing intersection by partial or complete relocation of the rodway(6).	\%	determinod by diagram		
Related Counterneasures					
	All	Fatal	Inuy	Fxalinjury	PDO
improve sigh distance at indan intersections	30 wa				
remove sight obstructions	$5{ }^{5}$ mat	54we ${ }^{\text {a }}$	$23 \mathrm{wa}^{\text {ai }}$		
irprove tighi distance at interections					
improve fight distances at intersection on cural, 4 line, divided bwy.	$47 \mathrm{cs}{ }^{4}$				$0^{0} \mathrm{wh}^{\mathrm{m}}$
improve intersection approach angle	$35_{\mathrm{mo}}{ }^{48}$				

Work Code 509					
Descriplion	Definition	Reduction Factor	Freventube Acedent	Best Math Reducton Fuctors	
Chansatization	hatafl islands ander pavemert naikings to contol or prohiti vetheulat movements A skelch of the proposed thanelizalime showh te zovided.	*	determined by diagram		
Relatd Countmeatas					
	AII	[atal	Lnjury	Fatalhjury	PDO
Add S Sgal and Channelization	$25^{\text {n }}$		$30_{\text {m }}$		22_{n}
Add Tum Bay	22^{31}	$40_{\mathrm{H},}{ }^{\text {de }}$	$\frac{2 \mathrm{n}^{4}}{}$		$2_{2}{ }^{3}$
Channelization--General Intersection			$65 w_{A}^{48} \cdot 25 w_{n}^{4}$		
Modify Boch Sipral atd Charueliztionn	52 n		71.		$43^{\text {n }}$
Modify Chamelization and Add Signi	27 A		${ }^{23_{\mathrm{R}}}$		29 E
Modify Channelization at Non Signalized Iniersection	${ }^{36}$		${ }^{47}{ }_{\text {f }}$		30 m
Modify Channelization at Signalized Entersetion:					
Medify Sienal and Add Chamblization	${ }^{28} 8_{\text {R }}$				278
Othe Channelization	27 my				

Wark Codes 510					
Desetipticn	Detinition	Redhiction Factor	Freventable Ascident	Best Mate Fa	ducten
Conutrel Tum Anotnds	Provide furmabonde at an intersection whane none existed periexaly	40	intersection		
Related Countermeasares					
	AII	Fatu	Injury	FatiMujury	PDO
Eitherel tumarounds	40 ch				

Table 5 - Roadway Work (Woril Codes 501-525) - Continued.

Work Code 511					
Description	Detunition	Reduction Factor	Preventable Accident	Best Match Reducion Factors	
Add Acceleration/Deccletation Lines	Construct acceleration and/or decelcration lanes where none existed previously.	10	outside 2 lunes (main) AND rear end/sam or ssisam		
Related Countermeasures					
	All	Fatal	Lnjuy	Fataliniury	PDO
Add Acceleration/Deceleration Lanes	$10_{\text {M7 }}{ }^{\text {HJ }}$				
Provide Accelerrtion Lanes	$10^{2 / 4}$				50^{WA}
Provide Deceleration Lancs	10 me			$40 \mathrm{w}^{\text {9/23 }}$	$40_{\text {WiA }}$
acceleration/decleration lane	$10_{\text {AL }} 10_{\text {CM, }} 10_{\text {Kr }} 10_{\text {DS }} 10_{\mathrm{Mt}}, 17_{\mathrm{FL}}$		$23_{\text {FF, }}$		

Work Cude 512					
Description	Definition	Reduction Factor	Preventable Acoident	Best Match Fac	lucton
Entrance Ramp Modification	Reconstruct existing ramps te confom with curfent desifable standards.	30	reap endsam OR all acc on outside main lanes from $1 / 10$ mile before comection to 210 Imile after connection		
Related Countermeasures					
	AII	Fatal	Iniur	Fatalinuiry	PDO
Ramp Modification	$23_{\text {mu, }} 25_{\mathrm{kr}} 23^{1}$				
Modify entance fante	$30^{\text {ca }}$				

Work Code 513					
Description	Definition	Reduction Factor	Preventabla nccident	Best March Fac	ductor
Exit Ramp Modifieation	Reconstruct existing ramps to conform wilh curfent desinable standards.	20	fronlage road or exit ramp AND ofl roadway		
Related Coumermessures					
	All	Fatal	Injury	Fata//inury	PDO
Ramp Modification	$25_{\mathrm{al}} 25_{\mathrm{KY}} 25^{\mathrm{m}}$				
Modify exit ramp	20 c				

Work Code 514				
Description	Drtmition	Reduction Feator	Preveritable Accident:	Best Matel Reducton Factors
Grade Separation	Construct verticat separation of intersectine roadways.	80	all	
Related Countrnatsures				
	U1	atal	ligur	Fatal/njas ${ }^{\text {P }}$ DDO
Construct Grade Separatim				

Table 5-Roadwayt Work (Work Codes 501-525)-Continued.

Work Code 515					
Destription	Befinition	Reduction Factor	Preventable Accident	Bet Match Reduton Factors	
Consifuct Interchange	Construal vertical separtion of intersecting roadways to incude interconneting ramps.	55	atl		
Related Countermeasures					
	A	Fatal	Injury	Fata/linjury	PDO
construet inerchange		$30_{5}{ }^{\text {b }}$	$30_{\text {fL }}{ }^{3}$		$3 \mathrm{~mL}^{\text {m }}$
reconstuct interchange	$40_{\text {aL }} 40_{\text {ct }} 40_{\text {da }} 40^{\text {ax }}$				

Werk Code 515					
Desziption	Definition	Reduction Factor	Preventable Accident	Best Match Reducton Factors	
Close Crossover	Permizently close an existing crussover.	95	main lane involved		
Relaled Countemeasures					
	Al	Fatal	Injury	Fatilnjury	PDO
close median cpenings					

Wark Code 517					
Description	Defurion	Reductier Factor	Preventable Accident	Best Match Reducter Factors	
Add Through Lane	Provide an aditional tratel lane.	28	two vehicles enging same dir and opp dir going straigh.		
Related Countermasures					
	N	Fatal	Injury	Fatallijury	PDÓ
Add Clinbing Lane	$14 w_{n} 96$				
Add Lane Withou New Median				$20.0{ }^{\text {a }}$ 9	$\begin{aligned} & 17_{w_{A}}{ }^{9 i n} \\ & 177_{w_{A}} \end{aligned}$
Add Pasting Lanc	$30_{w_{n}}{ }^{\text {P }}$				
Add Through Lane	$28_{\text {mi }}{ }^{18}$				
lane adilition	$25_{12}{ }^{7} 20 \mathrm{ky}$	39 AL '	$23^{2}{ }^{\prime}$	$23,2^{7}$	$27 A z^{2}$
lane added without median		$74 \mathrm{mr}^{16} \times 3 \mathrm{mar}^{16}, 52 \mathrm{mf}$	$30^{\text {m }}{ }^{16} \cdot 11 \mathrm{~m}^{16} \cdot 2 \mathrm{mf}^{2}$		

Wort Code 518					
Deseription	Ditinilion	Reductior Famof	Preventable Accident	Best Match Reductor Factors	
Install Continueus Tum Lane	Provide a zontinuous two-lane lef turn lane where none extesed previcusly.	40			
Relaled Countemeasires					
	Al	Fatal	Injury	Fatalinjury	PDG
Chanmelizaton-- Contiruous Lef-Tum Lane					
$\begin{aligned} & \text { lefl-um lane -two-say LT } \\ & \text { lane } \\ & \hline \end{aligned}$	$30_{A C} 30^{4 y}$, 32_{D}				

Table 5-Roadway Work(Work Codes 501-525)-Centinuel.

Work Code 519					
Description	Definition	Reduction factor	Preventable Accident	Beft Mitch	Reducion Factors
Add Lefl Tum Line	Provide an exchuse lef tom hine where nowe existel previouste. The alfected infersedion jopporches mus be specified.	25			
Related Countermeasures					
	All	Fatal	Iniury	Fala/injur	PDO
Add 2nd Lef Tum Lane in the Same Droction as Existing Left-Tum Line	$3{ }^{1}$		22_{4}		42^{n}
Add Lell Twn					
Add Left Turn - 7 Intersection	$79{ }^{3+}$	$80^{\text {R2 }}$	$80^{\text {Fe }}$		
Adu Lef Turn - Y htersection		$5{ }^{\text {Pt }}$	$S_{5}{ }^{3 k}$	$5{ }_{\text {WA }}$ H/	
Add Lef Tun Wih Existing Lef	35 wn \% ${ }^{\text {s/ }}$				
AddLeft Tum WinNo Leltitum Phase	15 w**				
Add Tima Laie end Signs	$3 \mathrm{Ca}_{\mathrm{c}}$				
Add Turaing Lane	B0a				
Add Lef-Tum Lane w! Phyical Separalien					
Twoway Left-TumLanc - Four Lanes to Five Lanes	28 ms			42,40	
Two-Way Lef-Turn Lans - Two Lanes to Three Laneq	32 ms			39,00	
Lnstall LefTam Larés. Proceted Lane With Cub or Raised Bars	$6^{7 \times 4 m^{94}}$				$61 \mathrm{w}_{4} 9$
Lutall LeteTem Lare Wthoul Signt					$20.4{ }^{426}$
Install Leftium Lane Wihout Signal - Painted Line:	32 ${ }^{\text {a }}$ 9*				
nstall Lefl-Twn Late Witioul Sazail AI T-Intersection	19 me				
Lnstall Two-Way Left. Tum Lancs					
Install Two-Way Lefl-Tum Lanes Ont Two-Lane Highway				39 ma	
Now Left Turn Charnelization At Sigulized Intersection With Lef Tun Phis	$36{ }^{36}$				
Now Lef Turn Chamelizat on at Sigmolized intersection Witheul Lefl Tumplay	$11 \mathrm{~F}^{\text {I6 }}$		344		
New Left Tum Chanhelized Intersestion	$19_{\text {fl }}$				$24 n$
Now Sigral LefloTum Lane ProtectedPernited Lef Tum Phase				$61 \mathrm{~N}^{46}$	
\|efl-tim lane - without sigmal	$2{ }^{2} \times 2.23_{\mathrm{Kr}, 2} 5_{\mathrm{c}}$				
Icfl-turn laic - with signat					
tim lare - with signal	360				
tumane		lmax_{3}	-1a	5	9_{a}
lefl tere lane - wiuh sjanl (plysical)	39 mm				
Lef tura lane - with signal (puinted	16 my				
10ff and right bum lanes with sigials	25_{Ny}				

Table S-Roadway Work (Work Codes 501-525) - Contunued.

Work Code 520					
Description	Definition	Reduction Factor	Preventable Accident	Best Match Reducton Factors	
Lengthen Left Tum Late	Provide additional length to an existing exclusive left turn lane Affected intersection lapprcached must be specilied.	40			
Related Countermeasures					
	All	Fatal	Injury	FatalInjury	PDO
Increase Storage Lane	15 ${ }^{\text {a }}$				
Length Left Tum Lane	$40_{\mathrm{mr}}{ }^{\text {² }}$				

Work Code 521					
Description	Definition	Reduction Factor	Preventable Accident	Best Match Reducton Factors	
Add Right Turt Lane	Provide af exclusive nght turn tane where none existed previously. Allected intersecticn approaches must be specified.	25			
Relaced Caunterricasures					
	All	Fatal	Injury	Fatalinuty	PDO
Add Right Turn	61 H		${ }^{49} \mathrm{FL}$		67 n. $10_{x A^{92}}$
Add Right ${ }^{\text {areme Lane }}$	$25 \mathrm{mr}^{41}$				
Add Right-ure Lane w Painted Separation	$31 \times 277^{\text {a }}$				
Add Right-Tur Lane w/ Paysical Separation	0_{0}				
left and right turn lanes with signals	250				

Work Code 522					
Description	Definition	Reduction Factor	Preventable Accident	Best Match Reducton Factors	
Lengthen Right Tum Lane	Provide edditional length to an existing exelusive right tum lane. Aftected intersection approaches must be specified.	40			
Reikted Countermeasures					
	Al	Fatal	Injury	Tatal/njury	PDO
Increase Stofage Lane	$15{ }^{3}$				
Length Right-Tum Lane	$40_{x 7}{ }^{14}$				

Table 5-Roadway Work (Work Codes 501-25) - Continued.

Work Code 533					
Destriplion	Defintion	Reduction Factor	Preventable Acciden	Bes Match Fad	ducton
Construct Pedestrian Over/Under Pass	Constrict a pedestrian crossover where none existed previously.	95	coll. w/ pedestrian		
RelatedCounterneasures					
	All	Fatal	Injur)	Fatal/njury	PDO
Constuca pedestrian over/under pess	$95_{\text {MT }}{ }^{14}$				
Construet pedetrain crossover					

Work Code 524					
Dessripticn	Definition	$\begin{gathered} \text { Reducion } \\ \text { Facter } \end{gathered}$	Preventable Accident	Best Match Fat	Reducton ors
Lurease Turning Radiug	Provide an increased uming radius al an existing intersection.	10	passenger cars and tricks w trailers of other tuck combinations AND coll. wi fixed cbject.		
Related Countemeasure					
	All	Fatal	Injury	Fatululiury	PD0
Incease Curb Radii				25 wa	$25_{\text {wA }}{ }^{\text {\% }}$
incerase intersection lum radil	 	$2^{5} \mathrm{Fl}{ }^{36}$	$25_{\mathrm{fL}}{ }^{\text {c/ }}$	$25_{\mathrm{wn}}{ }^{96}$	$\begin{aligned} & 2 s_{\mathrm{F}} \mathrm{sin} \\ & 2 s_{\mathrm{wA}}^{\mathrm{g}} \end{aligned}$

Work Code 515					
Description	Definition	Reduction Factor	Preventable Accident	$\overline{\text { Best Matct }}$	$\overline{\text { ductor }}$
Convertto One Way Frontage Roads	Convert two way frontage roads to ote-way aperation.	25			
Relatad Councmeaures					
	All	Fatal	Injury	Fatalinjury	PDO
Constuct a Local Service Road	$40_{\text {wi }}{ }^{\text {9, }}$				
Constuct Fronlage Road	$40{ }_{\text {WA }}{ }^{\text {\% }}$				
construe frontage toad		:			

```
1- Data sources for Montana reduction factors
    1a - Kentucky Study
    1b - FHWA-1977
    1c - Eff. of Safety Impr.
    1d - FHWA Report 1986
    te-Califomia-1
    1f California - 2
    1g. Montana Stuctes
    1h - Kentucky Study Rec.
    1i-Californa
    1]-Alabama
    1k - Calli. Minor lmpr.
    11- Calif. Spel. Study
    1m-Califomia - 3
    1n-Michigan
    10-Missouri
    1p-Pennsylvania
    1q-FHWA-1982
    1r-Mississippi
2-For the Montana report, when mutliple sources were used to determine certain reduction factors, an average value was computed for that
    specific case
3- Florida sources
    3a - NCHRP162
    3b - Missouri
    3c - Washington
    3d-Oklahoma
    3e-Kansas
    3f-Texas
    3g - Arkansas
    3h-New Jersey
    31-Montana
    3] - New York
4- Conditions for use: 2-lane highway, ADT 100-10,000; Lanes 8-12 feet wide; shoulders 0-12 feet wide. (From Missouri report)
5-Missouri references
5a-J. Lee, et, al. "Measure the Effectiveness of Highway Safety Projects and to Improve Forecasts of Accident Reduction in Kansas," University of Kansas, Transportation Center, February 1981.
5b - J. Barbaresso, et. al., "Selection Process for Local Highway Safety Projects," Transportation Research Record 847,
```

Transportation Research Board, 1982, pp. 24-29.
5 c - C. Zegeer, et. al., "Safety Cost-Effectiveness of Incremental Changes in Cross-Section Design - Informational Guide," Federal Highway Administration Report No. FHWARD-87/094, December 1987.
5 a - T. Creasely, ana K. Agent, "Development of Accident Reduction Factors;" University of Kentucky, Report No. UKTRP-85-6, March 1985.
5e- C. Zegeer and M. Cynecki, "Selection of Cost-Effective Countermeasures for Ulifity Pole Accidents - User's Manual," Federal Highway Administration, Report No, FHWA-1P-86-9, December 1086.
5 f - "Accident Identiflcation \& Surveillance Documentation Manual," University of Alabama, TSM Reprot No. 112-88, Sept, 1988. 5 g - "Selecting and Making Highway Safety Improvements: A Self-Instructional Text", Institute of Transportation EngIneers, TTC 440, 1977.
5 - J. Lovell and C. Hacter, "The Safety Effect of Conversion to All-Way Stop Control," Transportation Research Recond 1068. Transportation Research Board, 1986, pp. 103-107.
5 - J. Laughland, et. al., Methods for Evaluating Highway Safety Improvements," National Cooperative Highway Rescarch Program Repori 162, Transportation Research Board, 1975.
5j - "Accident Reduction Factors - State of Kanas HES Project Evaluations," Kansas Department of Transportation, Bureau of Traffic Engineering, June 1990.
$5 k$ - B. Benioff and T. Rorabaugh, "A Study of Clearance Intervals, Flashing Operation, and Left-Turn Phasing as Traffic Signals," Federal HIghway Administration, Report Number FHWA-RD-78-46, May 1980.
51 - J. Grahanl andi 4 . Glennon, "Manual on Identification, Analysis and Correction of High Acddent Localions," Missour State Highway Commission, November 1975.
5 m - J. A. Wattleworth. et. al, "Accldent Reduction Factors for Use in Calculationg Benefiticost - Florida Manual of Indentification, Analysis, and Correction of High Accident Locations," University of Florda, November 1988,
$5 n$ - "Designing Safer Roads - Practices for Resurfacing, Restoration, and Rehabilitation," Speclall Report 214, Transportation Research Board, 1987, pp. 256-264.
50- "Acoident Reduction Factors," New York State Department of Transportation, Traffic and Safety Division, January 1989.
$5 p$ - "A Study of Motor Vehicle traffic Accidents at Eridges on the Colorado State Highway System," Colorado State Department of Highways, Planning and Research Division, June 1973.
$5 q-J$. McCoy, "Safety Improvement Economic Analysis," Ipwa Deparment of Transportation, Memo Reference Number 590, December 20, 1985.
$5 r$ - "Evaluation of Minor Improvements (Parts 1-6)," Califomia Department of Public Works, Division of Highways, Traffic Department, May 1967.
5 s - T. Tamburri and R. Smith, "The Safety Index A Method of Evaluating and Rating Safety Benefits," Highway Research Rea I 332, Highway Research Board, 1970, pp. 28-43.
5- From New York report: Insufficient number of locations for factor calculation or no statistically significant change in accident rate.
If a factor is present the source for the factor is shown in remarks.
6 - Refer to Improvement Code 2721
6b - NYS DOTS PIES

6c - Refer to Improvement Codes 605 \& 702
6d malif. Transp. Agency, Dept. of Public Works, Div. of Highways, Evaluation of Minor Improvements (Before and after studies of projects in Califomia, tabulated statistics included.)
6 c - Traffic Safety Center, Midwest Research Inst. Manual on Identification, Analysis, and Correction of High-Accident Locations. FHWADOT 1976. (Studies in cooperation with Missouri Div. of Highway Safety.)
Bf - Calif. Dept. of Transp. Accident Rates vs. Shoulder Width. CALTRANS 1977. (Before and after studies of projects in Calif. witt tabulated statistics included.) Also noted as 2 lane roads only.
6g - Tamburt, Thomas N., "Accident Reduction Factors for Highway Safety Projects" State of Calif. Transp. Agency, Dept. of Publ Works Div. of Highways. 1969. (Before and after studies of 500 projects in Califormia.)
6h - FHWNDOT. Evaluation of the Highway-Related Safety Program Standards. 1977 (Compilation of safety project evaluations reported by states.)
61 - See Code 262.
6] - Strate, Harry E., "An Evaluation of Federal Highway Safety Program Effectiveness," FHWA 1978 (Compilation of safety projec evaluations reported by states)
6 K - Dale, C. W., "Cost Effectiveness of Safety improvement Programs," FHWADOT 1973. (Project studies in ref 6 h listed above.',
61- Open-graded mix most effective.
7- Represent statistically significant rate reductions from Arizona report.
8- Michigan references
8 - Recommended by K. Kunde. P.E., S.P.U., October, 1986. based on review of following references:
$8 b$ - Identification, analysis, correction of high aceident locations - Missouri State Highway Commission
8c - Highway Safety Design - University of Wisconsin - Madison
8 d - Road Commission for Oakland County
8e - UKTRP - 85-6 (March 1985) - Universily of Kentucky
8f. Estimated Florida Accident Reduction Table, 1987
8h- TSM Reput 112-88 (Sept. 1988) - University of Alabama
81 - Accident Reduction Factors for Benefit/Cost - Universilty of Florida
8j - Design Standards for RRR Products - Indiana D.O.T. (January 1991)
9 - Washington references
Qa - "Safety Improvement Program for Toll Roads," UKTRP Report 548, July 1980 (J. G. Pigman, K. R. Agent, J. D. Crabtree).
9 g - "Assessment of Techniques for Cost-Effectiveness for Highway Accident Countermeasures," Texas Transportation Institute; Report No. FHWA-RD-79-53, January 1979 (McFarland, et al.).
gc - "Interstate Satety Improvement Program," Division Or Research, KYDOT, Report No.517. March 1979 (U. G, Pigman, K. . Agent, C. V. Zegecr).
9d - "The 1981 Annual Report, Pennisylvanla Highway Safety Improvement Program," Pennsylvania Department of Transportation. September 1981.
9 e - "Predicting Accident Reduction Factors for Safety Improvements in the State of Kansas," Kansas University, Transportation Center, August 1981 (Mulinazz, Lee),

9f - "Informational Guide for Highway Safety Improvements," the Washington Traffic Safety Commission and the Federal Highway Administration, Olympia, Washington, 1978.
9 g - "Evaluation of Highway Safety Program Standaros within the Purview of the FHWA," United States Department of Transportation (USDOT) FHWA, REport No. DOT-FH 11-9129, March, 1977 (Jorgenson).
9h - "Califomia Traffic Manual," Califomia Department of Trensportation, 1978.
91 - "The 1992 Annual Report on Highway Safety Improvement Programs," USDOT/FHWA, April 1992.
9j - "Handbook of Highway Safety Design and Operating Practices," Federal Highway Administration, 1978.
9k - "Safety Cost-Effectiveness of Incremental Changes in Cross Section Design - Informational Gulde." Federal Highway Administration Report No. FHWA/RD-87/094, December 1987 (C. Zegeer, et. al.).
91 - "Manual on Identification, Analyses, and Comection of High Accident Lccations," Midwest Research Institute, Missouri State Highway Cormmission for Federal Highway Administration (FHWA), 1976 (Graham, Glennon).
日m - "Mcthods for Evaluating Highway Sarety Improvoments," National Cooperative Highway Research Program (NCHRP) Report 182, Transportation Research Board, 1975 (Laughland, et, al.).
90 - "Cost and Safety Effectiveness of Highway Design Elements," NCHRP Report No. 197, Transportation Research Board, 1978 (Jorgenson)
Sp - "Analysis of Highway Accidents, Pedestrian Behavior and Bicycle Program Implementation,* Transportation Research Record 847. Transportation Research Board, Washington, DC., 1982.
9 q - "Highway Safety Improvements: An Evaluation of Title 11 Countermeasures in the State of Texas," Traffic Accident Research and Evaluation Program, Texas Transportation Institute, September, 1979 (Sparks, Flowers).
9r - "Evaluation of Criteria for Safety Improvement on the Highway," Roy Jorgenson and Associates; Westat Research Analysts, Inc, US Department of Commerce, October 1966.
Os - "Selection of Cost-Effective Countermeasures for Utility Pole Accidents - User's Manual, Federal Highway Administration, Report No. FHWAVCATE-87/01, January 1887 (C. Zegeer and M. Cynecki).
of - "Selecting and Making Highway Safety Improvements: A Self-Instructional Text," Institute of Transportation Engineers, TTC $44 C$ 1977.

Ou - "The Safety Effects of Conversion to All-Way Stop Control." Transportation Research Recond 1068, Transportation Research Board, 1886, pp. 103-107 (J. Lovell and E. Hauen).
gv - "Accident Reduction Factors for use in Calculating Benefit/Cost - Flonda Manual of Identification, Analysis and Correction of High Accldent Localions," University of Florida, November 1988 (J. A. Wattleworth, el. al.)
9w - "Accident Identification \& Surveillance Documentation Manual," University of Alabama, TSM Report No. 112-88, September, 1988.
$3 x$ - "Optimal Higltway Safety Improvement Investments by Dynamic Programming." KYDOT Division of Research, Report 412 November $10 / 4$ (J. G. Pigman, K. R. Agent, J. G. Mayes, C. V. Zegeer).
$9 y$ - "Selection Process for Local Highway Safety Projects;" Transportation Research recond 847, Tranisportation Research Board. 1982. PP. 24-29 (1. Barbaresso, et. al.)

9 z - "A Study of Clearance Intervals, Flashing Operation, and Left-Tum Phasing as Traffic Signals," Federal Highway Administration, Repori No. FHVA-RD-78-46; May 1980 (B. Benoiff and T. Rorabaugh).

Gaa - "Evaluation of Minor Improvements (Parts 1-6)," Califomia Deparment of Public Works, Division of Highways, Traffic Depl May 1967.
9 bb - "Accident Reduction Factors - State of Kanas HES Project Evaluations," Kansas Department of Transportation, Bureau of Traffic Engineering, June 1890.
9cc - "Overhead Yellow-Red Flashing Beacons," California Department of Transportation, Division of Traffic Engineering, Reporl No. FHWA/CATEJ-87/01, January 1987 (J. Hammer, and E. Tye).
9dd - "Designing Safer Roads - Practices for Resurfacing, Restoration, and Rehabilitation." Special Report 214, Transportation Research Board, 1987, pp 256-264.
gee - "Highway Safety Evaluation System," FHWA Office of Highway Safety, 1982.
$9 f f$ - "A Study or Motor Vehicle Traffic Accidents at Bridges on the Colorado State Highway System," Colorado State Department
......- of Highways, Planning and Research Division, June-1973.
9 gg - "The Pavement Marking Demonstration Program - One State's View, Proceedings ASCE Specialty Conference, Implementing Highway Safety Improvements, pp. 149-164, March 1980 (R. Hatton)
Ghh - "Safety Benefits from the Categorical Safety Programs," Transportation Engineering, March, 1978 (Thomas A. Hall)
10- Conditions for these factors were taken from two-lane rural roadway. (Washington)
11 - Reduction factors updated using 1992 Low Cost Accident Counter Measure Evaluations. (New York)
12 - The average reduction factor for curve waming arrow includes reduction factor for waming/guide sign. (Montana)
13 - The average reduction factor for 4 -way stop includes reduction factor for install stop sign. (Montana)
14. Conditions for these factors were taken from two-lane urban roadway. (Washington)

15 - Includes larger lenses, more/better placed heads, phase adjustment, and general signal upgrades. (New York)
16 - Conditions for these factors were taken from multi-lane urban roadway. (Washington)
17 - Conditions for these factors were taken from multi-lane rural roadway. (Washington)
18- Conditions for these factors were taken from rural roadway. (Washington)
19 - Reduction factors were given in \%/f. (Michigan)
20- The average reduction factor for pavement widening includes reduction factors for widen paved shoulder and construction paved shoulder (where no shoulder exist). (Montana)
21 - Conditions for these factors were taken from 2 lane roadway. (Washington)
22 - Conditions for these factors were taken from multi-lane roadway. (Washington)
23 - Conditions for these factors were taken from rural \& urban multilane roadway. (Washington)

NOTE: Negative factors represent increases in these types of accidents.

Appendix J

Intersection and Traffic Control HES Service Lives

Project	Projected Service Life (Years)
Construct Turning Lanes (includes two-way continuous turn lanes)	10
Provide Traffic Channelizations	10
Improve Sight Distance	10
Install Traffic Signs	6
Install Pavements Markings	3
Install Delineators	3
Install Illumination	15
Upgrade or Install Traffic Signals	10
Install Flashing Beacons	10

Structures HES Service Lives

Project	Projected Service Life (Years)
Widen or Modify Bridge for Safety	20
Replace Bridge for Safety	30
Construct New Bridge for Safety	30
Replace or Improve Minor Structure for Safety	20
Upgrade Bridge Rail	10
Construct Overpass or Interchange	30

Roadway and Roadside HES Service Lives

Project	Projected Service Life (Years)
Widen Traveled - Way (no lanes added)	20
Add Lane (s) to Traveled - Way	20
Construct Median for Traffic Separation	20
Widen or Improve Shoulder	20
Realign Roadway (except at railroads)	10
Overlay for Skid Treatment	10
Groove Pavement for Skid Treatment	10
Install Breakaway Sign Supports	10
Install Guardrail End Treatments	10
Upgrade Guardrails	10
Upgrade Median Barrier	15
Install New Median Barrier	15
Install Impact Attenuators	10
Flatten or Regrade SideSlopes	20
Install Bridge Approach Guardrail Transitions	10
Remove Obstacles	20
Safety Treat Drainage Structures	20

Note: The projected service lives for various HES projects povided in this appendix were adapted from the FHWA "1993 Annual Report on Highway Safety Improvement Programs."

