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Introduction 

Each year in the United States, thousands of safety projects are 
imp 1 emented throughout the nation's highway system in the hope of reducing 
traffic accidents. Although most of these projects are never eva 1 uated to 
determine if (or to what degree) they are reducing accidents, others are 
evaluated. For those projects that are evaluated, the evaluation design most 
often selected to assess project effectiveness is the before-and-after design. 

The before-and-after design is a popular method for evaluating safety 
projects for several reasons. First of all, this design requires the collecting 
of relatively few data -just counts of accidents before and after treatment. 

Secondly, the statistical tests employed with this design [e.g. tests based upon 
the Poisson, chi-square (Michaels, 1966), or standard normal distribution 
(Gerlough and Barnes, 1971)] are fairly simple to use. Third, and perhaps most 
importantly, this design has an intuitive appeal - if accidents decrease by 30 

percent following treatment, that 30 percent reduction in accidents is assumed 
to have resulted from the treatment imposed. 1 

When the before-and-after design is used to estimate the overall effect 
of treatment at several different sites, some evaluators choose to compare "the 
sum of the before accidents" to "the sum of the after accidents" at the treatment 
sites and to carry out their analysis "as if" they were assessing one large 
project. This practice is statistically suspect - and a squandering of 

information. 
In this article an alternative method of using before-and-after data to 

estimate the avera 11 (average) accident reduction effectiveness of remedi a 1 
projects implemented at several different treatment sites will be demonstrated. 
The data used in this demonstration are taken from the state of New York [Larsen 
(1986)] and are reproduced in Table 1 (along with several columns of statistics 
that will be used shortly). 

Each of the 20 remedial projects in Table 1 was implemented (with geometric 

1Unfortunately, analyses based upon the before-and-after design can be, and 
often are, invalid for a variety of reasons that will not be fully addressed in 
this article. See, however, Campbell and Stanley (1966); Griffin, Powers and 
Mullen (1975); Griffin (1981). 
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design exceptions) at a different site as part of the state's non-freeway, 3R 
program. For each of these 20 projects, six years of accident history were 
available: three years before and three years after treatment. 2 

Table 1: Three Years of "Before" and Three Years of "After" Accident Data 
(and Assorted Statistics) for Twenty, Non-Freeway, 3R Projects in New York 

Accidents 
Site Before After L _Lse-- w wL wL2 

1 10 14 0.336 0.414 5.833 1.960 0.659 
2 20 11 -0.598 0.375 7.097 -4.244 2.538 
3 15 7 -0.762 0.458 4. 773 -3.637 2. 771 
4 28 29 0.035 0.265 14.246 0.499 0.017 
5 40 18 -0.799 0.284 12.414 -9.919 7.925 
6 5 4 -0.223 0.671 2.222 -0.496 0.111 
7 40 36 -0.105 0.230 18.947 -1.989 0.209 
8 10 28 1.030 0.368 7.368 7.589 7.817 
9 57 45 -0.236 0.199 25.147 -5.935 1.401 

10 82 51 -0.475 0.178 31.444 -14.936 7.095 
11 2 8 1.386 0.791 1.600 2.218 3.074 
12 26 29 0.109 0.270 13.709 1.494 0.163 
13 16 3 -1.674 0.629 2.526 -4.229 7.079 
14 14 17 0.194 0.361 7.677 1.489 0.289 
15 29 17 -0.534 0.305 10.717 -5.723 3.056 
16 27 17 -0.463 0.310 10.432 -4.830 2.236 
17 17 21 0.211 0.326 9.395 1.982 0.418 
18 18 16 -0.118 0.344 8.471 -1.000 0.118 
19 33 24 -0.318 0.268 13.895 -4.419 1.405 
20 _5 ~ 0.000 0.632 2.500 0.000 0.000 

494 400 210.413 -44.126 48.381 

Larsen estimates that accidents were reduced by 19 percent at the 20 
treatment sites shown in Table 1. 

E = [(ob - ex) +ex] 100 (1) 

= [(400 - 494) + 494] 100 

= - 19.0 (a 19.0 percent reduction) 

20ne treatment site shown in Larsen (1986) sustained no accidents during the 
before or after period. That site was omitted from Table 1. 
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E =percent change in accidents, with (-) indicating 
reductions and (+) indicating increases, 

ob = observed accidents in the after period, and 

ex = expected accidents in the after period, as reflected 
in the number of accidents in the before period 

Larsen's overall estimate of a 19 percent reduction in accidents is, in 
actuality, the weighted average of the accident reductions at each of 20 sites 
(E1), with weights defined in proportion to the number of before accidents at 
each site (b1). 

Where, 

E = [!: b;E; + I: b;J 100 

= [(ob - ex) + ex] 100 

E; = percent change in accidents at the ith site, and 

b; = before accidents at the ith site 

An Alternative Method of Analysis 

(2) 

In this section the data in Table 1 will be reanalyzed using a different 
method than the one employed by Larsen. In the first part of this section, a 
procedure for evaluating the effectiveness of a project (e.g., lane widening, 
shoulder widening, etc.) implemented at one site is explained. In the second part 
of this section, the procedure is extended to permit evaluation of a group of 
projects, i.e., projects implemented at several sitss. 

Estimating the Effect of 
Treatment at One Site 

Let us begin our alternative analysis of Larsen's data by defining a test 
statistic for each of the 20 sites in Table 1. For a given site, let U equal the 
ratio of accidents in the after period (A) to accidents in the before period (B). 
Taking the second site in Table 1 as an example, we calculate: 
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U = A + 8 

= 11/20 
= 0.550 
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(3) 

And, the percent change in accidents at this site (following treatment) 
may be expressed as a function of U: 

E = (U - 1) 100 
= (0.550 - 1) 100 
= - 45.0 

(4) 

(a 45.0 percent reduction) 

Now, the question might reasonably be asked: Is this apparent 45.0 percent 
reduction in accidents in the present example a bona fide effect, or, might a 
change in accidents of this magnitude have occurred, say, 5 or more times in a 
hundred by chance? To answer this question, let us reflect for a moment upon U, 
and its natural logarithm (L). 

Under the null hypothesis that the treatment imposed is ineffective, 
accidents would not be expected to change from before to after. That is to say, 
we would expect U to equal 1, plus or minus random error, if the imposed 
treatment were ineffective. Nevertheless, the sampling distribution for U can 
range from 0 to + oo. Values of U between 0 and 1 represent an apparent decrease 

in accidents from before to after; va 1 ues between 1 and + oo represent an 

apparent increase in accidents from before to after. 
Because the sampling distribution for U is highly skewed with a mean of 

1 and a range from 0 to + oo, U is often transformed by taking its natura 1 

logarithm. This expression for L is referred to as a legit. 

L = ln U 
= - 0.598 

(5) 

(for U = 0.550) 

The sampling distribution for Lis symmetric and asymptotically normal with 
a mean of 0 and a range from - oo to + oo. Furthermore, the standard error for L 

(L5e) may be approximated as: 
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Lse = (1/A + 1/B) o.5 

= 0.375 
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(6) 

(for A= 11; B = 20) 

Eqs 5 and 6 may then be used to calculate a standard normal (Z) score to 
determine if L is significantly different from 0, which is equivalent to 
determining if U is significantly different from 1. And, if U is significantly 
different from 1, the null hypothesis is rejected in favor of the alternative 
that the treatment imposed had an effect on accidents, i.e., that the 45.0 
percent reduction in accidents observed in the current example is a real effect. 

Z = L + L58 

= ln (A/B) + (1/A + 1/8) 0
·
5 

= ln (11/20) + (1/11 + 1/20) 0
·
5 

= - 1. 59 

(7) 

Since the calculated Z does not exceed± 1.96, Lis not significantly 

different from zero, U is not significantly different from 1, and the apparent 

45.0 percent reduction in accidents is not significantly different from zero (at 
a= 0.05). 

To place a 95 percent confidence interval around the estimated 45.0 percent 
reduction in accidents at the second site in Table 1, proceed as follows: 3 

L1_u = L ± 1.96 L58 

= - 0.598 ± 1.96(0.375) 

= - 1.333 to 0.137 

L1 L U = e to e u 1-u 
= e- 1.333 to eo.137 

= 0.264 to 1.147 

(8) 

(9) 

3The subscripts 1 and u represent the 1 ower and upper 1 imi ts of the 95 
percent confidence interval. 
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E1_u = (U 1 - 1) 100 to (Uu ·- 1) 100 (10) 
= (0.264 - 1) 100 to (1.147 - 1) 100 
= - 73.6 to + 14.7 

Note that when L1_u brackets zero (or U1_u brackets 1), E1_u will bracket 
zero and the calculated effect of treatment will not be significant. In the 
present example, the 95 percent confidence interval around the estimated 
treatment effect (i.e., around an estimated 45.0 percent reduction in accidents) 
ranges from a 73.6 percent reduction in accidents to a 14.7 percent increase. 

Figure 1 further explains Eqs 3 through 10. In the top half of this figure, 
two functions are shown. The upper, diagonal function passes through the origin 
and has a slope of 1. This function represents the null hypothesis that accidents 
will not change from before to after. The lower function has a slope of (0.550) 
and represents the alternative hypothesis. It passes through the origin and one 
data point (20,11). Apparent treatment effect (E) is the vertical distance 
between the two functions, relative to the distance between the diagonal and the 
horizontal axis. In this case, the vertical distance between the two functions 
is 45.0 percent of the distance between the diagonal and the horizontal axis. 

In the lower half of Figure 1, a 95 percent confidence interval (depicted 
as a shaded area) has been placed around the alternative hypothesis. U1 (0.264) 
represents the lower bound of the 95 percent confidence interval; Uu (1.147) 
represents the upper bound of the 95 percent confidence tnterval. Since the 
diagonal (i.e., the null hypothesis) is contained within the shaded area, the 
apparent 45.0 percent reduction in accidents is not significant. If the diagonal 
had lain outside the shaded area, the calculated treatment effect would have 
been significant (at a =0.05). 

Estimating the Effect of 
Treatment at Several Sites 

To determine the overall effect of treatments implemented at several sites, 
we will proceed in a manner somewhat similar to Larsen. Namely, we will calculate 
the weighted average logit (L) for the several treatment sites being evaluated 
and assess the statistical significance of the calculated[. The weighted average 
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logit will then be transformed into an overall estimate of the percent change 
in accidents following treatment (E), and a 95 percent confidence interval will 
be placed around E. Data from Table 1 will be used to demonstrate the equations 
that fa 11 ow. 

To begin we will calculate a weight (w) for each logit (L). The calculated 
weights will be the reciprocals of the squares of the standard errors of the 
logits. (See, for example, Netter, Wasserman and Kutner, 1989, Chapter 16.) 4 

W = 1 'T' Lse 2 

w = 1 ( 1/ A + 1/B) 

For the second site in Table 1, the appropriate weight is 7.097. 

w = 1 + (1/11 + 1/20) 

= 7.097 

The weighted average logit (L) is simply: 

[ = L wl + L w 

= - 44.126 + 210.413 

= - 0.210 

And, the standard error for [ is: 

[se = 1 + (L w)o.s 

= 1 + 210. 413°• 5 

= 0.069 

( 11) 

(12) 

(13) 

4 If a given site sustains many before and after accidents, the logit for 
that site is estimated with relatively little error (i.e., Lse is small) and, 
therefore, that site should (and does) have a relatively large weight (w) by Eq 
11. Conversely, if a given site sustains few before and after accidents, the 
logit for that site is estimated with less precision (i.e., Lsi is large) and the 
weight associated with that site should be (and is) relative y small. 
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To determine if the overall, weighted average logit is significantly 
different from zero (i.e., to determine if the overa 11 treatment effect is 
significant), a standard normal (Z) test is employed once again. 

Z = [ + [se 

= - 0.210 + 0.069 

= - 3.04 

(14) 

The weighted. average logit (L) may be transformed to 0 by taking its 
antilogarithm: 

0 = e[ (15) 
= e- 0.210 

= 0. 811 

The estimated overall percent change in accidents (E) attributable to the 
treatments imposed is: 

E = (0 - 1) 100 
(0.811 - 1) 100 

= - 18.9 

(16) 

(an 18.9 percent reduction) 

The 95 percent confidence interval around E is derived from the following 
three equations: 

[ 1-u = [ ± 1. 96 [se 

= - 0.210 ± 1.96(0.069) 

= - 0.345 to - 0.075 

c, [ 
o,_u = e to e u 

= e- o.345 to e- o.o75 

= 0.708 to 0.928 

9 

(17) 

(18) 



E1_u = (01 - 1) 100 to (Uu - 1) 100 
= (0.708 - 1) 100 to (0.928 - 1) 100 
= - 29.2 to - 7.2 

L.I. Griffin, III 

(19) 

In summary, the overall reduction in accidents at the 20 sites shown in 
Table 1 (from before to after) is estimated to be 18.9 percent, which is 
significant at a= 0.05 (and very similar to Larsen's estimate of 19.0 percent). 

The 95 percent confidence interval around this estimate ranges from a 7.2 percent 
reduction in accidents to a 29.2 percent reduction in accidents. 

Figure 2 may help to further explain Eqs 11 through 19. In the upper half 
of Figure 2, the 20 before-after data points from Table 1 are shown. The diagonal 
function passing through the origin represents the null hypothesis that accidents 
do not change from before to after. The lower function passing through the origin 
and having a slope of 0 (0.811) represents the alternative hypothesis, that 
accidents do change from before to after, based upon 20 data points. The vertical 
distance between the two functions, relative to the vertical distance between 
the diagonal and the horizontal axis, represents the percent change in accidents 
from before to after. In the present case, the vertical distance between the 
two functions is 18.9 percent of the vertical distance between the diagonal and 
the horizontal axis. 

In the lower half of Figure 2, the 95 percent confidence interval around 
the alternative hypothesis is shown as a shaded area. The upper boundary for 
this interval (Uu) passes through the origin and has a slope of 0.928. The lower 
boundary (01) passes through the origin and has a slope of 0.708. Since the 
shaded area does not contain the diagonal (i.e., the null hypothesis), the 
estimated 18.9 percent reduction in accidents (E) is significant at a = 0.05. 

Having determined that, overall, the 20 treatment sites demonstrated a 
significant 18.9 percent reduction in accidents from before to after, it is 
important to ask the question: Were the changes in accidents homogeneous (i.e., 
consistent) across all treatment sites? Or, were accident changes (from before 
to after) at the different treatment sites heterogeneous (i.e., inconsistent)? 

If the imposed treatments were equally effective (i.e., homogeneous) across 
all sites, the data points in the upper half of Figure 2 would fall along the 
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lower function (i.e., along the alternative hypothesis that passes through the 
origin with a slope of 0.811). To the extent that the data points are scattered 
around this function, individual estimates of treatment effect are not 
homogeneous, not consistent. The question now becomes: Is it reasonable to assume 
that the scattering of the data points around the alternative hypothesis 
represents random error about a consistent treatment effect? Or, is it more 
reasonable to assume that inconsistent treatment effects (i.e., "apples and 
oranges") are being. averaged together? If inconsistent treatment effects are 
being averaged together, the overall weighted average is at least partially 
dependent upon which remedial projects are included in the analysis (i.e., upon 
the relative numbers of apples and oranges included in the analysis). 

Fortunately, a simple test statistic referred to as chi-square (x2) 

homogeneity is available for determining the consistency of several estimates 
of treatment effect, as outlined in Table 2. 5

•
6 

Table 2: Calculation of x 2 Treatment, x 2 Homogeneity and x 2 Total 

x2 
Degrees 

Source of Freedom 

Treatment [2 (:I:w) 1 
Homogeneity ~ w(L - [) 2 N-1 

Total :I: wl 2 N 

x2 treatment is a measure of the significance of the departure of 0 (0.811) 

from 1, or the significance of the departure of [ (- 0. 210) from zero. By 
squaring the Z (- 3.04) associated with[, we get a value that is algebraically 

5For more detail on chi-square homogeneity see Woolf (1955) or Fleiss (1973, 
Chapter 10). See also Berkson's minimum logit chi-square which is equivalent 
(Bishop, Fienberg and Holland, 1975, Chapter 10). 

6The program used to perform the analyses in this article was written in 
SAS (the Statistical Analysis Systemtm). A copy of the program is provided as 
Appendix A. The output for the current data set is provided as Appendix B. 
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equivalent to x2 treatment: [2 (~w). 7 There is one degree of freedom associated 

with x2 treatment. 

x2 total is equal to the sum of the of the Z2's (i.e., x2's) at each of the 

treatment sites. 8 The number of degrees of freedom associated with x2 total is 

equal to the number of treatment sites. If there are N treatment sites, there 
are N degrees of freedom associated with x2 total. 

x2 homogeneity is the difference between x2 total and x2 treatment, which 

is algebraically equivalent to ~ w(L - [) 2. In effect, x2 homogeneity is a 

measure of "goodness of fit" - a measure of the significance of the scatter of 

the data around the overall estimate of treatment effect. When individual 
estimates of treatment effect (i.e., L, U or E) at each of N sites are equal, 
x2 homogeneity wi 11 equa 1 zero. When calculated treatment effects differ by 

nothing more than random error from site to site, x2 will be relatively small 

(i.e., within chance expectation), and there will be no reason to reject the 
notion that the individual estimates of treatment effect are homogeneous 

7The significance of the weighted average legit is assessed with Z: 

Z = [ + [se 

z2 = [2 + [se2 

= [ 2 + (1/E w) 

= Ll(~ w) 

(from Eq 14) 

(see Eq 13) 

(Recall that chi-square with one degree of freedom is equivalent to Z2.) 

8The significance of a legit at a given treatment site is assessed with Z: 

Z = L + Lse 

z2 = L2 + Ls/ 

= L 2 + ( 1/w) 

= wl2 

(from Eq 7) 

(see Eq 11) 

The sum of the individual Z2's is, therefore, ~ wL2, as shown in Table 2. 
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(consistent). When calculated treatment effects differ substantially from site 
to site, x2 homogeneity will be relatively large (i.e., larger than we would have 

expected by chance), and we will conclude that the overall estimate of treatment 
effect is an average derived by combining heterogeneous (inconsistent) effects 
(i.e., an average based upon apples and oranges). There are N- 1 degrees of 
freedom associated with x2 homogeneity. 

Table 3 is a chi-square analysis of the data in Table 1. The chi-square 
homogeneity shown in this table is large: x2 = 39.127 with 19 degrees of freedom. 

The probability of getting a x2 of 39.127 (or larger) with 19 degrees of freedom, 

if the effects of treatment at all 20 sites are really homogeneous (equal), is 
small: 0.0024. Therefore, we will conclude that the effects of treatment at the 
20 sites shown in Table 1 were heterogeneous, inconsistent from site to site. 
This finding of heterogeneity suggests that other factors - factors not 

accounted for in the present analysis -may explain why some sites benefitted 

more than others from treatment. 

Table 3: Summary Chi-Square Analysis of Larsen's Data (Table 1) 

Source x2 df Probability 

Treatment 9.254 1 0.0024 
Homogeneity 39.127 19 0.0043 
Total 48.381 20 0.0004 

This finding of heterogeneity also suggests that the 18.9 percent reduction 
in accidents (overall) results, at least partially, from the particular admixture 
of projects in Table 1. Were this analysis to be repeated with a different 
admixture of projects, a different overall treatment effect might very well be 
computed. 

14 



L.I. Griffin, III 

Discussion 

When accident data are recorded at a site before (B) and after (A) 
treatment, the difference between B and A may result from any one of three 
factors (or combinations of factors): 

1. Treatment Effect 
2. Random Error 
3. Non-Random Error (e.g., confounding factors, selection bias, etc.) 

In the analyses performed in this article, we assume that all of the 
differences between B and A result from (1) treatment effect and/or (2) random 
error. Then, if we find random error an unlikely explanation for the difference 
between B and A, we assume that the observed difference between B and A results 
from treatment (Eqs 7 and 14). But, what about non-random error? 

What if the "after" data in our analysis were collected during an economic 
recession or an oil embargo? 

What if the state in which our data were collected raised its accident 
reporting threshold from $250 to $1,000 just as we began collecting "after~ 
data? 

What if the years during which we collected "after" data were unusually 
cold and icy, or rainy? 

What if average daily traffic (ADT) was increasing rapidly at our treatment 
sites between the "before" and "after" period? 

What if the sites selected for treatment were specifically chosen because 
they demonstrated unusually high numbers of accidents during the "before~ 
period? 

If economic recessions, oil embargoes, accident reporting thresholds, 
weather conditions and ADT affect accident probability- and if any of these 

factors occur unevenly in the "before" and "after" periods of the evaluation

non-random error is introduced into our analysis. If individual treatment sites 
are selected for high numbers of accidents during the "before" period, accidents 
at that those sites will (other things being equal) regress back toward the mean 
during the "after" period, and, once again, non-random error will be introduced 

15 



L.I. Griffin, III 

into our analysis. (See, for example, Griffin et al., 1975). 
When non-random error is present but not accounted for in our analysis, 

estimates of treatment effect may be seriously in error. Treatments may appear 
to be significant when they are not; treatments that do not appear to be 
significant may, in fact, be significant. 

Again, the statistical procedure presented in this article assumes that 
non-random errors (confounding variables, selection bias, etc.) are not at play 
in our analysis. If this assumption is correct, the procedure presented above 
is valid. But, to the extent that this assumption is incorrect, the procedure 
presented above is invalid. 
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data ba; 
options nodate nonumber linesize = 80 pagesize =52; 
input b a; 

Label b = 'Before' 
a = 'After' 

Lse = 'Lse' 
w = 'w' 

wl = 'wl' 
wl2 = 'wl**2'; 

if b = 0 then b = b + .5; 
if a = 0 then a = a + .5; 

E = ((a/b)-1)*100; 
L = log(a/b); 
Lse = sqrt((1/a)+(1/b)); 
z = L/Lse; 
w = 1/((1/a)+(1/b)); 
wl = w*L; 
wl2 = wl*L; 

n + 1; 
sumw + w; 
sumwl + wl; 
sumwl2 + wL2; 

cards; 
10 14 
20 11 
15 7 

33 24 
5 5 
run; 

E 
L 
Lse 
z 
w 
wl 
wl2 

proc print noobs label uniform; 
var b a E L Lse Z w wl wL2; 
sum b a w wl wl2; 
run; 

data newba; 
set ba end = last; 
if last A= 1 then delete; 
keep n sumw sumwl sumwL2; 

M = sumwL/sumw; 
Mse = 1/(sqrt(sumw)); 

= round (E, .1) ; 
= round (L, .001); 
= round (Lse, .001); 
= round (Z, .01); 
= round (w, . 001); 
= round (wl, .001); 
= round (wl2, . 001); 
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MZ = M/Mse; 
MU = exp(M); 
ME = (MU-1)*100; 
Ml = M - 1.96*Mse; 
M2 = M + 1.96*Mse; 
MUl = exp(Ml); 
MU2 = exp(M2); 
MEl = (MUl-1)*100; 
ME2 = (MU2-1)*100; 
ct = (M**2)*sumw; 
ch = sumwL2 - ct; 
chdf= n - 1; 

pr treat= 1 - probchi(ct,l); 
pr=homo = 1 - probchi(ch,chdf); 
pr_tot = 1 - probchi(sumwL2,n); 

file print; 
put _page_; 

L.I. Griffin, III 

put '-------------------------------------------------------------------'; 
put ' SUMMARY ANALYSIS'; 
put '-------------------------------------------------------------------'; 
put 'The weighted average logit' @ 60 M 8.3; 
put 'The antilogarithm of the weighted average logit' @ 60 MU 8.3; 
put 'The apparent overall percentage change in accidents' @ 60 ME 8.3; 
put 'The Z associated with this change in accidents' @ 60 MZ 8.3; 
put '-------------------------------------------------------------------'; 
put ' 95 PERCENT CONFIDENCE INTERVALS'; 
put '-------------------------------------------------------------------'; 
put 'Weighted average logit: Upper limit' @ 60M2 8.3; 
put 'Weighted average logit: Lower limit' @ 60 Ml 8.3; 
put ' '; 
put 'Antilogarithm of weighted average logit: Upper limit' @ 60 MU2 8.3; 
put 'Antilogarithm of weighted average logit: Lower limit' @ 60 MUl 8.3; 
put ' '; 
put 'Percent change in accidents: Upper limit' @ 60 ME2 8.3; 
put 'Percent change in accidents: Lower limit' @ 60 MEl 8.3; 
put '-------------------------------------------------------------------'; 
put ' CHI-SQUARE ANALYSIS'; 
put '-------------------------------------------------------------------'; 
put 'Source Chi~Square df Probability'; 
put '----------- ---------- -----------'; 
put 'Treatment 1' @ 21 ct 7.3 
put 'Homogeneity' @ 21 ch 7.3 @ 35 chdf 2.0 
put '----------- ---------- -----------'; 

@ 43 pr treat 7.4; 
@ 43 pr-homo 7.4; 

put 'Total' @ 21 sumwL2 7.3 @ 35 n 2.0 @ 43 pr tot 7.4; 
put '--------------------------------------------------------------~----'; 
put '-------------------------------------------------------------------'; 
run; 
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SAS 

Before After E L Lse z w wl wl**2 

10 14 40.0 0.336 0.414 0.81 5.833 1.960 0.659 
20 11 -45.0 -0.598 0.375 -1.59 7.097 -4.244 2.538 
15 7 -53.3 -0.762 0.458 -1.66 4.773 -3.637 2. 771 
28 29 3.6 0.035 0.265 0.13 14.246 0.499 0.017 
40 18 -55.0 -0.799 0.284 -2.81 12.414 -9.919 7.925 
5 4 -20.0 -0.223 0.671 -0.33 2.222 -0.496 0.111 

40 36 -10.0 -0.105 0.230 -0.46 18.947 -1.989 0.209 
10 28 180.0 1.030 0.368 2.80 7.368 7.589 7.817 
57 45 -21.1 -0.236 0.199 -1.19 25.147 -5.935 1.401 
82 51 -37.8 -0.475 0.178 -2.67 31.444 -14.936 7.095 

2 8 300.0 1.386 0.791 1.75 1.600 2.218 3.074 
26 29 11.5 0.109 0.270 0.40 13.709 1.494 0.163 
16 3 -81.3 -1.674 0.629 -2.66 2.526 -4.229 7.079 
14 17 21.4 0.194 0.361 0.54 7.677 1.489 0.289 
29 17 -41.4 -0.534 0.305 -1.75 10.717 -5.723 3.056 
27 17 -37.0 -0.463 0.310 -1.49 10.432 -4.830 2.236 
17 21 23.5 0. 211 0.326 0.65 9.395 1.982 0.418 
18 16 -11.1 -0.118 0.344 -0.34 8.471 -1.000 0.118 
33 24 -27.3 -0.318 0.268 -1.19 13.895 -4.419 1.405 
5 5 0.0 0.000 0.632 0.00 2.500 0.000 0.000 

====== ----- ======= ------- ====== -------
494 400 210.413 -44.126 48.381 
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SAS 

SUMMARY ANALYSIS 

The weighted average legit 
The antilogarithm of the weighted average legit 
The apparent overall percentage change in accidents 
The Z associated with this change in accidents 

95 PERCENT CONFIDENCE INTERVALS 

Weighted average legit: Upper limit 
Weighted average legit: Lower limit 

Antilogarithm of weighted average legit: Upper limit 
Antilogarithm of weighted average legit: Lower limit 

Percent change in accidents: Upper limit 
Percent change in accidents: Lower limit 

CHI-SQUARE ANALYSIS 

Source Chi-Square df Probability 
----------- ---------- -----------
Treatment 9.254 1 0.0024 
Homogeneity 39.127 19 0.0043 
----------- ---------- -----------
Total 48.381 20 0.0004 
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-0.210 
0.811 

-18.918 
-3.042 

-0.075 
-0.345 

0.928 
0.708 

-7.188 
-29.166 


