What Is a Sobriety Checkpoint?

A sobriety checkpoint is a roadblock set up by law enforcement officers to detect and deter impaired driving in locations where there is a high incidence of crashes and fatalities (Elder, et. al., 2002). At checkpoints, multiple law enforcement officers (ranging in number from 2 to 15 or more) funnel all traffic into a controlled area and perform brief interviews (10 – 30 seconds) with drivers to determine if they are impaired by alcohol or other substances. If the interviewing officer suspects impairment, the officer directs the driver out of the flow of traffic to a secondary officer for further impairment screening.

Overview of Research Results Related to the Effectiveness of Sobriety Checkpoints

- The Centers for Disease Control (CDC) recommends sobriety checkpoints as an effective countermeasure for motor-vehicle injury prevention based on strong evidence presented in peer-reviewed research.
- An overview of the research from the past 30 years consistently demonstrates that sobriety checkpoints reduce alcohol-impaired crashes by 20% and fatal crashes thought to involve alcohol by 20% and 26%.
- Officers make one arrest every 6.5 hours when using checkpoints, compared to one arrest every 7.5 hours on regular patrol.
- Checkpoint Tennessee, one of the most frequently cited, methodologically sound, and rigorous studies, found a 20.4% reduction of alcohol-related fatalities. The deterrent effect lasted for almost two years following the conclusion of the checkpoint program.
- Sobriety checkpoints have a strong return on investment: $144 to $1.
- Sobriety checkpoints can be successfully operated with just a few officers.
- Although surveys did not specifically focus on Texas, national and targeted opinion polls found strong support for the use of sobriety checkpoints (73%) even among those who reported that they have driven after drinking during the last month (57%).
- Thirty-eight states conduct sobriety checkpoints, some more frequently than others – those that do not conduct sobriety checkpoints either consider them illegal by law or state constitution or the state provides no explicit authority to conduct them or prohibits them based on their interpretation of the U.S. Constitution (as of 2/2011).

Effectiveness and Efficiency of Sobriety Checkpoints

Critics frequently point to the low arrest rate at sobriety checkpoints to argue they are unsuccessful. This criticism represents a fundamental misunderstanding of how checkpoints work. Checkpoints measure success differently than traditional law enforcement techniques, which focus on the number of arrests. A successful sobriety checkpoint program increases the real or perceived risk of being arrested for driving while intoxicated. If a driver is deciding between driving while intoxicated...
intoxicated or designating a driver, they will likely consider the risk of arrest and the resulting punishment from choosing to drive (Ross, 1982). A successful checkpoint program increases the risk of arrest (real or perceived), and influences a motorist to choose to not drive while intoxicated. As a result of this deterrent effect, checkpoints regularly decrease impaired crashes by 15% – 20% (Elder, et. al., 2002).

However, if one considers an alternative measure for arrest rates – the number of hours between arrests per officer, sobriety checkpoints can have higher arrest rates than standard enforcement practices. One study found that “officers make one arrest every 6.5 hours when using checkpoints, compared to one arrest every 7.5 hours on regular patrol” (Fell, Lacey, & Voas, 2004, p. 223). Additionally, time spent by officers interviewing unimpaired drivers is not wasted; these interactions provide the impetus for the community to recognize an increased arrest risk when driving while intoxicated, and respond by choosing not to engage in this activity. A more accurate and frequently used measure of a successful checkpoint is the amount of crime deterred, not solely the number of drivers arrested.

In the Checkpoint Tennessee study, one of the most frequently cited, methodologically sound, and rigorous studies, researchers found that the program reduced alcohol impaired driving facilities by 20.4% (Lacey, Jones, & Smith, 1999). The program placed 12 checkpoints across the state every weekend for 12 months – from March 1994 to March 1995 (Lacey, Jones, & Smith, 1999). On five different weekends, local police used a blitz scheme where officers implemented small checkpoints in each of the state’s 95 counties. The program included a statewide media campaign to raise awareness of the checkpoint program, including a television spot, a billboard campaign and press releases. Extensive news coverage from local television stations, newspapers and radio stations supplemented the media campaign.

Benefit Cost Analysis

The researchers evaluating the Checkpoint Tennessee project developed a model to measure alcohol-related fatal crashes for Tennessee and each of its surrounding states (Lacey, Jones, & Smith, 1999). This approach was taken to ensure that any measurable changes were attributable to the checkpoint program and not a result of a larger, regional change. The model showed a reduction of approximately nine alcohol-related fatal crashes per month (or a 20.4% reduction). The model found a statistically insignificant increase in fatalities for the surrounding states. The total cost of the program was $927,594, with approximately half of the funds paid by a federal government grant, and half paid by the state. According to the National Highway Traffic Safety Administration (NHTSA) estimate of $977,000 in costs per alcohol-related fatality, for every dollar invested by Tennessee and the federal government, $114 was returned in cost savings from averted fatalities (Lacey, Jones, & Smith, 1999; Sobriety Checkpoints, 2003).
Public Opinion on the Use of Sobriety Checkpoints

The American Automobile Association Foundation for Traffic Safety (AAA Foundation) annually conducts national polls on various traffic safety questions. In 2009, the poll found that 72.8% of Americans support the use of sobriety checkpoints in their community multiple times per month. Only 8.9% of respondents did not support the use of sobriety checkpoints. Even a majority (57%) of drivers who self-reported driving after drinking in the past month supported sobriety checkpoints (AAA Foundation, 2009).

Feedback from Stakeholders: In general, the feedback from prosecution and judicial representatives contacted during the development of this research summary supported the idea of allowing sobriety checkpoints as an impaired driving countermeasure. The stakeholders agreed that the State should not prohibit law enforcement from using a tool that has been found to be effective in multiple environments to reduce crashes and alter driving after drinking behavior.

Issues were raised regarding to potential challenges by the defense, but the issue of probable cause is also part of traditional traffic stops that are based on driving behavior. The stakeholders recognize that the major focus of sobriety checkpoints is the deterrence effect of drivers choosing not to drive after drinking.

Final Comments: It should be noted that if sobriety checkpoints are deemed acceptable by statute, law enforcement, and, subsequently, corresponding jurisdictional communities, will make a conscious choice about whether to employ them as an impaired-driving countermeasure. Sobriety checkpoints are only one tool, albeit an effective tool, that law enforcement and their associated communities can utilize to address alcohol-impaired-driving problems in local areas. Saturation and targeted patrols conducted by DWI or traffic units within local law enforcement agencies, as well as general patrol officers, will continue to operate in addition to any use of sobriety checkpoints.

Detailed information related to the research used in the development of this brief is available upon request from the research contacts.
Evaluation of Sobriety Checkpoints as a Countermeasure to Reduce Alcohol Impaired Driving

<table>
<thead>
<tr>
<th>Evaluation Area</th>
<th>Principal Author, Year</th>
<th>Evaluation Details</th>
<th>Quantitative Impact</th>
</tr>
</thead>
</table>
| Local: Charlottesville, VA | Voas, 1985 | Operated 12/30/83 - 12/31/84 with 94 total operations and 23,615 stops | Had-been-drinking crashes decreased by 15%
Nighttime crashes decreased by 8%
Use of passive alcohol sensors increased arrest rate from 1.05% to 3.21% |
| Local: Largo, FL | Lacey, 1986 | Operated 10/83 to 10/84 | 8% decrease in nighttime crashes
20% decrease in had-been-drinking crashes |
| Local: Bergen County, NJ | Levy, 1990 | Operated 5/83 until 7/86 with ~40,000 stops per year | 29% reduction in single-vehicle nighttime crashes
Significant reduction in single vehicle nighttime crashes |
| Local: Binghamton, NY | Wells, 1992 | Operated 11/86 – 8/90 | 16% reduction in injury crashes
21% reduction in late-night crashes
6% reduction in total crashes |
| Statewide: New Mexico | Castle, 1995 | Operated 12/93 – 12/94 | 21% reduction in alcohol-involved fatal crashes
Perception of being stopped when driving while intoxicated increased 1% among men and 22% among women |
| Local: Four CA cities | Stuster, 1995 | Operated monthly from 1987 – 1993 | 21.5% decrease in injury crashes involving alcohol |
| Local: Wichita, KS | Jones, 1995 | Operated monthly from 1/88 to 7/92 | 23% reduction in nighttime single-vehicle injury crashes
35% reduction in nighttime single-vehicle crashes |
| Local | Lacey, 2006 | Studied small-scale, low manpower checkpoints | 70% lower levels of BAC>.05 than control communities |
| Statewide: New Mexico | Lacey, 1995 | Analyzed effectiveness, public perception, and approval rates | 21% reduction in alcohol-related fatal crashes |
| Statewide: Tennessee | Lacey, 1999 | Operated 4/94 – 3/95
882 checkpoints
144,299 drivers stopped | 20% reduction in alcohol-related fatal crashes
5% reduction in single-vehicle injury crashes
Self-reported drinking and driving decreased from 8.6% to 6.0% |
| Local: 3 communities in NC, SC, & CA | Voas, 1997 | Varied intensity and frequency | Single vehicle nighttime crashes across the three communities were reduced |

Note: Information gathered from Center for Disease Control's Guide to Community Prevention Services, Insurance Institute for Highway Safety, & individually funded research reports & articles published in peer-reviewed, scholarly journals.