USAA, TTI Begin Extensive Distracted Driving Study

CRASH Program’s Popularity Grows
New Study Shines Light on Pavement Markings and Safety
TDS Named Best Practice in Highway Safety Report
USAA, TTI Begin Extensive Distracted Driving Study

The United Services Automobile Association (USAA) has contracted with the Texas A&M Transportation Institute (TTI) to conduct an extensive study on the use of cell phones by Texas drivers, and distracted driving in general. The effort is the first involving TTI and USAA, one of the nation’s most respected insurance companies offering insurance protection and financial services to the U.S. military and their families for more than 90 years.

A survey of roughly 3,000 people will be conducted in driver’s license stations operated by the Texas Department of Public Safety in several regions around the state. The sample size will allow researchers to examine which demographic groups are most affected by the distracted driving issue and what their attitudes and self-reported behaviors are, according to TTI Senior Research Scientist Katie Womack, who will lead the study.

“We are committed to promoting vehicle and driver safety for the protection of our military members and their families.” — Joel Camarano, USAA Executive Director

TTI is responsible for one of the nation’s most extensive texting-while-driving studies — one that demonstrated how texting behind the wheel doubles a driver’s reaction time.

USAA visited TTI in 2012 for a discussion that focused on USAA’s interests in current and emerging roadway safety issues, along with a review of TTI’s capabilities and current research activities. TTI is responsible for one of the nation’s most extensive texting-while-driving studies — one that demonstrated how texting behind the wheel doubles a driver’s reaction time.

USAA, a longtime advocate for safe driving, hosted Distracted Driving Summits last year in Texas and Florida, in conjunction with each state’s Department of Transportation, Shriners Hospitals and the Distraction Advocate Network. The objective was to raise awareness of the dangers of distracted driving and compel people to personally change their driving behaviors; you can watch highlights on YouTube (keywords: Florida Distracted Driving Summit, presented by USAA).

“USAA is clearly focused on some of the most pressing roadway safety problems that our society now faces, and TTI is focused on pursuing solutions to those problems,” says TTI Director Dennis Christiansen. “We’re confident that together we’re going to make a very strong and effective team.”

“We are committed to promoting vehicle and driver safety for the protection of our military members and their families,” says USAA Executive Director Joel Camarano. “USAA is excited to form this relationship with TTI, a leader in roadway safety research for over 60 years.”

“USAA is clearly focused on some of the most pressing roadway safety problems that our society now faces, and TTI is focused on pursuing solutions to those problems.” — Dennis Christiansen, TTI Director

For more information, contact Katie Womack at kwomack@tamu.edu.
New Study Shines Light on Pavement Markings & Safety

When you drive at night and your headlights illuminate a lane marking, it makes you feel safer, right? After all, bright pavement markings are designed to help you stay in your lane and prevent you from running off the roadway.

Called retroreflectivity, special materials in edge lines and lane lines create the brightness. With age and wear that brightness deteriorates. Although some assume there’s a correlation between pavement marking retroreflectivity and safety, up until now researchers have not been able to prove it.

“So it’s a hard thing to measure,” says Paul Carlson, Texas A&M Transportation Institute (TTI) Research Engineer, who is also the head of the Institute’s Operations and Design Division. Carlson is known for his pavement marking research and leads TTI’s unique Visibility Research Laboratory. “For one thing, in order to gather good information about safety you would have to know the level of brightness, or retroreflectivity, a pavement marking had at the time someone ran off the roadway.”

As it turns out, Carlson had a near perfect opportunity to conduct a study, thanks to the Michigan Department of Transportation (MDOT). For years, MDOT has measured the brightness of its pavement markings on individual roadways. Carlson realized that he could compare those brightness levels with the crashes occurring on those roadways.

“Michigan DOT is very serious about keeping its pavement markings maintained. If measurements show pavement markings were dull, they would be replaced. Comparing both dull and bright pavement markings with crash information, we were in a good position to determine if those retroreflectivity characteristics played a role in safety.”

So, Carlson’s study, An Investigation of Longitudinal Pavement Marking Retroreflectivity and Safety, got underway. Sponsored by the Federal Highway Administration (FHWA), he gathered crash data and retroreflectivity measurements from 2002 through 2008. He compared the measurements with certain types of crashes: single vehicle, nighttime crashes that occurred during dry conditions and non-snow time months.

After a lengthy and laborious process, Carlson completed the research in July 2012. He determined that fewer crashes occurred when pavement markers were brighter and newer.

“The evidence is pretty compelling,” Carlson says of the research. “It demonstrates that maintenance of pavement markings retroreflectivity can have a positive effect on safety. I’m confident of the results — brighter pavement markings mean safer roadways.”

In the meantime, Carlson has been working with FHWA as it comes up with a retroreflectivity standard, which would help DOTs across the country know when pavement markings should be replaced.

For more information contact Paul Carlson at paul-carlson@tamu.edu
Taking Research Further with the Driving Simulator

At the Texas A&M Transportation Institute (TTI), researchers have the ability to take transportation studies even further using the Institute’s driving simulator.

TTI’s portable desktop driving simulator is housed in the Center for Transportation Safety (CTS). The Realtime Technologies, Inc. system uses SimCreator, software that allows researchers to test real-world roadway scenarios. Most simulators (including TTI’s previous model) are in a fixed location so research participants can only be attracted from the city where the simulator resides. Because TTI’s simulator takes up less space, and is easily transported, researchers can use it to gather data from geographically and demographically diverse locations.

Associate Research Specialist Alicia Nelson, programmer of the simulator for the past 10 years, said, “We picked this system because we can use it to recreate many different scenarios, and its portability means it can be used in any city.”

Why Use a Simulator?

Driving simulators provide a safe and controlled environment to explore how and why people react in certain driving situations. In the simulated environment it is possible to inexpenesively test multiple variations of a specific scenario.

A wider variety of roadway design and traffic conditions can be tested than are typically available in a test track study or field study. The simulator also allows researchers to run subjects in a controlled, and safe, environment before taking them out to a test track.

“One cool thing about this software is that the company has given us the capability to create our own roadways,” Nelson said. “For example, we could mockup Riverside if we wanted. The base system that we have is also adaptable, allowing us to diversify our research capabilities in the future.”

These possibilities include being able to model a particular type of vehicle, such as an 18-wheeler or bicycle, or projecting full-size images on large screens, instead of using computer monitors. In order to take advantage of these capabilities, three TTI researchers have been trained as simulator programers - Myung Ko, Jeff Miles and Marcie Perez. Another new feature to the simulator is the ability to use the faceLAB eye tracking system from Seeing Machines in conjunction with the simulator.

Assistant Research Engineer Jeff Miles said, “The integration of the Seeing Machines eye-tracker with the Realtime driving simulator will enable researchers to investigate where drivers are looking within different driving environments. This can be critical to reaction time, especially in visual complex driving environments, such as urban freeway segments, urban arterials, and residential streets.”

Miles explains that depending on the setup of the study, researchers could evaluate potential new traffic control devices or roadway geometry treatments against existing devices and geometry to estimate how effective those potential treatments might be in the real world with respect to detection within a visual complex environment, prior to field deployment. He says this will allow for an increase in what can be tested while keeping costs down.

“The driving simulator has been used in support of these efforts:”

- Studies to Determine the Effectiveness of Longitudinal Channelizing Devices in Work Zones
- Driver Workload and Visual Studies
- Studies to Improve Temporary Traffic Control at Urban Freeway Interchanges and Pavement Marking Material Selection in Work Zones
- Guidelines for the use of Pavement Marking Symbols at Freeway Interchanges
- Test Procedures for Evaluating Distraction Potential in Connected Vehicle Systems

For more information about the driving simulator, contact Alicia Nelson at a-nelson@tamu.edu.
Remotely Controlling Work Zone Traffic

Safety measures have been implemented to protect flaggers in work zones, but crashes involving flaggers still occur and often result in serious injury to the flagger. The purpose of an automated flagger assistance device (AFAD) is to remotely control traffic in work zones, while removing the flagger from harm’s way.

Researchers at the Texas A&M Transportation Institute (TTI) recently evaluated motorists’ understanding of automated flagger assistance devices (AFADs) in work zones and found that while AFADs may increase the safety of flaggers, motorists may misunderstand AFADs, thus, increasing the potential for motorists to enter the lane closure when they should remain stopped.

In this study, two types of AFADs were evaluated — one type uses a remote controlled stop/slow sign to alternate the right-of-way; the other uses remote controlled red and yellow lenses to alternate the right-of-way. A gate arm is only required with the latter.

The study consisted of multiple surveys and field studies. During the survey portion of the study, researchers investigated the motorist understanding of both types of AFADs. The surveys found:

- For the stop/slow AFAD, a newly designed WAIT ON STOP/GO ON SIGN symbol sign resulted in the highest percentage of participants who understood to stop and remain stopped until the AFAD indicated that it was safe to proceed.
- For all of the stop/slow AFAD treatments, a portion of the participants indicated they would have stopped and then proceeded instead of waiting until the AFAD displayed the slow sign. Thus, researchers recommended that a gate arm be required with stop/slow AFADs.
- For the red/yellow lens AFAD, participants understood the stop and proceed phase. However, most participants did not understand the difference between the flashing and steady yellow arrows (i.e., proceed and transition phases, respectively). Even so, the use of the gate arm appeared to inform motorists about when to proceed and when to stop.

Through the field studies researchers evaluated the two different types of AFADs along with a flagger with a stop/slow paddle at both ends of the lane closure. The field studies found:

- The violation rate for the stop/slow AFAD without a gate arm was the highest and was significantly higher than the violation rate for the red/yellow lens AFAD (which requires a gate arm). The addition of a gate arm to the stop/slow AFAD decreased the violation rate such that it was not significantly different from the red/yellow lens AFAD. In addition, supplemental signs increased motorist understanding that the sign would change to a slow sign when motorists were allowed to proceed.
- Some motorists did enter the lane closure under the stop condition for both types of AFADs. However, the majority of these violations occurred at the end of the proceed condition when the AFAD began to change to the stop condition. In all cases, the motorist caught up to the end of the queue or the flagger was able to stop these motorists before they encountered oncoming traffic.

Researchers believe that both types of AFADs (stop/slow and red/yellow lens) may be used to control traffic at lane closures on two-lane, two-way roadways. However, they recommend that agencies implementing AFADs make area drivers aware of the use of the new devices to reduce potential confusion.

For more information contact Melissa Finley at m-finley@tamu.edu or Nada Trout at n-trout@tamu.edu
DDACTS
Becoming the New Crime and Crash-Fighting Tool for Law Enforcement

Are traffic crashes and crime related? Well, it turns out they often are. Find an area of town that has an abundance of crashes and traffic violations and chances are pretty good that the crime rate is high there too.

Law enforcement agencies have found that providing a high police presence in areas with both problems often lowers both crash and crime rates, sometimes dramatically.

This philosophy of fighting those problem areas is called Data-Driven Approaches to Crime and Traffic Safety, or DDACTS as it’s known among law enforcement agencies.

“This philosophy of policing is really catching on with excellent results,” says Associate Research Scientist Troy Walden. He is overseeing a three-year Center for Transportation Safety (CTS) traffic safety grant awarded by TxDOT with funds from the National Highway Traffic Safety Administration. “We’ve been conducting workshops for law enforcement agencies — teaching them how to find ‘hot spots,’ which are areas where crime and crashes are highest. The technique provides a high-profile police presence that is supported through high visibility traffic enforcement efforts.”

DDACTS is a radically different approach to crime fighting, where traffic law enforcement is emphasized to address the hot spot locations.

In the latest case, six south Texas police agencies attended the DDACTS workshop in February — Brownsville, Edinburg, Laredo, Mission, Harlingen and Pharr Police Departments.

For most agencies, DDACTS is a radically different approach to crime fighting. Criminal activity is usually the focus of most law enforcement agencies, however with DDACTS, traffic law enforcement is emphasized to address the hot spot locations.

“It’s not unusual for agencies to see a 30 to 40 percent drop in crime and crashes in any given community that utilizes this process,” Walden explains. “That’s a 30 to 40 percent reduction across the board, with some communities experiencing a 70 percent reduction.”

Walden says that cities often experience reductions in violent crimes, including homicide, aggravated assault, burglary and auto theft. At the same time, there are often fewer traffic fatalities and injury crashes, while the number of arrests increases.

“This is not ‘the flavor of the month’ kind of approach,” he says. “This is a long-term, data-driven policing philosophy that departments continue to work on. Sometimes your high crime and crash areas will be migratory, so it’s important to reassess and evaluate crime and crash data to pinpoint those areas.”

For more information contact Troy Walden at twalden1@tamu.edu

U.S. Rep Recognizes TDS leaders

Leaders of a growing statewide teen driving safety program who met with U.S. Representative Pete Gallego on May 20 announced their goal of reducing by half the number of young drivers using cell phones.

“A recent study by the Texas A&M Transportation Institute found that 10 percent of drivers in Texas are using their cell phone at any point in time — that means 10 percent of drivers are talking on the phone or texting right now,” said Sydney Alvarado, a member of the Teens in the Driver Seat (TDS) Teen Advisory Board. “But we can do better than that; with the right kind of positive peer pressure, we believe we can cut that number in half among young drivers.”

Rep. Gallego met with Advisory Board members at Texas A&M University-San Antonio (TAMU-SA) as part of the group’s annual meeting and awards presentation. TAMU-SA President Dr. Maria Hernandez Ferrier also participated in the annual recognition.

Too many senseless deaths occur due to distracted driving,” said Representative Pete Gallego (TX-23). “No one understands young people better than young people themselves. I’m glad that this group is being proactive and looking for creative ways to curb a bad and dangerous habit.”

The annual meeting of the TDS Teen Advisory Board brings the group to the city where the nationally-recognized program first began in 2002. It was during that year that the crash deaths of 10 teens over a six-week period prompted the Texas Department of Transportation to pursue more effective ways to keep young drivers and passengers safe, leading to the launch of TDS, created by the Texas A&M Transportation Institute. The program is now active in more than 500 Texas high schools and middle schools.

In addition to hosting the advisory group meeting, Dr. Ferrier helped recognize TDS program schools, student leaders and sponsors for their efforts. A total of 17 schools received awards — including cash prizes of up to $1,000 — for their creativity and effectiveness in programming; 46 incoming and outgoing advisory board members were recognized; and 13 faculty/staff members at the schools were honored as “Sponsor Stars.”

“The young leaders we recognize today are demonstrating that peer influence can prevent crashes and save lives,” said Russell Henk, who created and directs the TDS program at TTI. “Through their leadership and creative thinking, they’re serving as fine examples not only to each other, but to the rest of us on the road as well.”

For more information contact Russell Henk at r-henk@tamu.edu
Voice-to-Text Apps Offer No Driving Safety Benefit;
As With Manual Texting, Reaction Times Double

Texting drivers may believe they’re being more careful when they use the voice-to-text method, but new research findings suggest that those applications offer no real safety advantage over manual texting if drivers choose to visually confirm the spoken texts.

The study was sponsored by the Southwest Region University Transportation Center and conducted by the Texas A&M Transportation Institute. SWUTC is a part of the University Transportation Centers Program, which is a federally-funded program administered by the U.S. Department of Transportation’s Research and Innovative Technology Administration.

The study is the first of its kind, as it is based on the performance of 43 research participants driving an actual vehicle on a closed course. Other research efforts have evaluated manual versus voice-activated tasks using devices installed in a vehicle, but the TTI analysis is the first to compare voice-to-text and manual texting on a handheld device in an actual driving environment.

Drivers first navigated the course without any use of cell phones. Each driver then traveled the course three more times performing a series of texting exercises — once using each of two voice-to-text applications (Siri® for the iPhone and Vlingo® for Android), and once texting manually. Researchers then measured the time it took each driver to complete the tasks, and also noted how long it took for the drivers to respond to a light which came on at random intervals during the exercises.

Major findings from the study included:

- Driver response times were significantly delayed no matter which texting method was used. In each case, drivers took about twice as long to react as they did when they weren’t texting. With slower reaction times, drivers are less able to take action in response to sudden roadway hazards, such as a swerving vehicle or a pedestrian in the street.
- The amount of time that drivers spent looking at the roadway ahead was significantly less when they were texting, no matter which texting method was used.
- For most tasks, manual texting required slightly less time than the voice-to-text method, but driver performance was roughly the same with both.
- Drivers felt less safe when they were texting, but felt safer when using a voice-to-text application than when texting manually, even though driving performance suffered equally with both methods.

The study’s results were published during National Distracted Driving Awareness Month. Numerous agencies, including the Texas Department of Transportation (TxDOT) are sponsoring public awareness campaigns to highlight the dangers of driving distractions, particularly those associated with cell phone use.

Another TTI study now underway is examining the motivations and attitudes of distracted drivers. Results from the focus groups and a 3,000-driver survey are expected in late summer, and will include a look at which demographic groups are most affected by the distracted driving issue.

For more information contact Christine Yager at c-yager@ttimail.tamu.edu
CRASH Program’s Popularity Grows

Barely a year since its introduction, the Crash Reporting and Analysis for Safer Highways (CRASH) program’s popularity has boomed, encouraging the development of new, online training technology, which is currently being created.

CRASH is a free, secure Internet application for law enforcement agencies to process Texas Peace Officer’s Crash Reports (CR-3) electronically. It is a component of the Crash Records Information System (CRIS). Together, CRIS and CRASH allow for the analysis of all crashes in the state. This distinguishes the system from others because there is currently no federal database for all crash records.

The Fatality Analysis Reporting System (FARS), for example, only records data on vehicular crashes that involve fatalities. FARS is updated once a year, but when police agencies use the CRASH system, CRIS is able to update in real-time, allowing for more meaningful data for safety researchers.

Before CRASH, all vehicle crash reports had to be filled out longhand, which after undergoing numerous mailing exchanges from officer to supervisor and back, can cost between $4 and $11 per report. CRASH provides a faster way to fill out these reports, and on average, cuts the cost to 96 cents, revisions included. As agencies continue to implement the CRASH system, more state revenue will be saved.

“Over the holidays alone, 19 new agencies contacted TxDOT to either inquire about CRASH or start the process to obtain CRASH,” said Jon Graber, an Associate Transportation Researcher at the Texas A&M Transportation Institute (TTI).

Along with reduced costs, CRASH provides many other benefits to help reduce time hassle for police officers, including:

• Auto-fill for selected fields on police reports;
• Touch screen access;
• Paperless system;
• A template for simplified crash illustrations; and
• 10–15 minutes per report, instead of 30–45 minutes with paper.

There are no major drawbacks to the CRASH system, but there may be a slower learning curve for officers who did not grow up using computer technology. However, Graber does say that these officers are still able to use the CRASH system after a little practice.

CRASH will help further researchers’ understanding of vehicle crash statistics, especially at intersections. This is important because having a better understanding of car crashes can lead to improved prevention measures. Some of these measures may include targeted enforcement and traffic lights. With CRASH, police agencies will have easy access to information and statistics about a variety of car crash situations.

CRASH went live in October 2011. The first four police agencies to implement CRASH were Travis County Sheriff’s Department and police departments in Fairview, Cedar Park and La Vernia. The program has been well received by larger police agencies, and TxDOT has now begun implementing the program into smaller towns. “The top 120 agencies in Texas account for 89 percent of all crash reports,” Graber said. “There are about 1800 agencies statewide. Online training will allow those smaller agencies to train and use CRASH.” As of January 2013, about 500 percent of all crash reports are being submitted to the state via CRASH, and the state is expected to reach 89 percent electronic submission by the end of the year.

TxDOT is already making plans to further enhance the online system, finding more ways to make filling out crash reports even simpler for police officers.

For more information contact Troy Walden at t-walden@ttimail.tamu.edu or Jon Graber at j-graber@ttimail.tamu.edu
A devastating flood in 2006 tested the El Paso region’s ability to deal with a natural disaster. Six years later, a relatively minor (2.5 magnitude) earthquake rattled the area, fortunately causing no injuries or damage, but still raising questions about what might have been. The events had two things in common. Both were highly unusual occurrences, and both underscored the need for an effective plan to keep traffic moving in the aftermath of a catastrophic event.

Until now, the best any city or agency could do would be to assess the results of such an event and then act, using a responsive approach. Advances in computer modeling, however, now make a proactive plan more possible, potentially giving the planners the head start they need to minimize the public safety and economic consequences of a disaster.

“We now have the ability to anticipate the impact of both the immediate and longer-term effects on both sides of the border, and that’s something we could not do before.”
— Jeff Shelton, TTI Associate Research Scientist

Researchers from the Texas A&M Transportation Institute are developing such a plan, using computer simulation and modeling to develop appropriate responses to a disaster scenario involving the collapse of the Interstate 10 / U.S. Highway 54 interchange combined with a closure of the Bridge of the Americas port of entry in Mexico. In this example of a worst-case scenario, researchers are determining both the short- and long-term impacts on the transportation system and how the disruptions would affect the regional economy.

“An extreme event will have an immediate impact on both commuter traffic and commercial traffic, and it will also have impacts months after the event happens,” says TTI Associate Research Scientist Jeff Shelton. “We now have the ability to anticipate the impact of both the immediate and longer-term effects on both sides of the border, and that’s something we could not do before.”

The findings of their research should make local agencies better able to:
- Identify those areas that would be most adversely affected by traffic pattern changes.
- Predict traffic pattern changes.
- Pinpoint where corrections to existing traffic control and demand management may be needed.
- Identify and recommend alternate routes to divert traffic from affected areas.

Apart from the mobility-related impacts, the researchers say, extreme events carry significant public safety consequences, sometimes severely limiting how emergency vehicles can make their way to, from, or through affected areas.

The research team is also doing an economic impact analysis to determine the financial costs associated with extreme events. Extensive traffic delays and lost productivity can cripple the supply chains that feed products to a vast network of manufacturers on both sides of the border, and the associated expenses add up quickly. In addition, several states and federal policy questions arise from such an event.

- Would toll rates at other ports of entry be relaxed during reconstruction?
- Would Customs and Border Protection (CBP) increase agents at other bridges to alleviate additional strain of vehicles shifting to other bridges?
- All construction projects must go through the environmental process—The Federal Highway Administration requires documentation for reconstruction under the National Environmental Policy Act. Due to the huge economic burden this event places on the economy, can the documentation process be expedited?

“The total amount of US-Mexico trade is about $300 billion a year, over $30 billion of that passes through El Paso,” says TTI Research Scientist Rafael Aldrete. “So any disruption to that commercial activity would be massive. With a pro-active plan, we are better able to minimize that disruption.”

“The total amount of US-Mexico trade is about $300 billion a year, over $30 billion of that passes through El Paso.”
— Rafael Aldrete, TTI Research Scientist

The study is being funded by the Center for International Intelligent Transportation Research, with additional support from the El Paso Metropolitan Planning Organization. MPO officials expect the research to provide insight and possible improvements to existing emergency response plans. In addition, they expect the results to improve the overall MPO planning process and the Horizon 2040 Metropolitan Plan now in development.

“Disasters typically happen with little or no warning, and the consequences can be catastrophic,” Shelton says. “The best that we can do is to be ready for anything. That’s a very lofty goal, but we’re a big step closer now.”

For more information contact Jeff Shelton at j-shelton@tamu.edu
TDS Named Best Practice in Highway Safety Report

The Teens in the Driver Seat Program (TDS) has been highlighted as a best practice in the 2012 Texas Highway Safety Annual Report.

“In the last decade we have worked hard to change the way teens think about driving,” said TDS Director Russell Henk. “It is an honor to be recognized as a best practice by our biggest sponsor.”

“TDS is saving lives because young people are driving the program. Every element, every facet, and every refinement of TDS is influenced by young people.”
— Texas Highway Safety Annual Report

Each year, the Texas Department of Transportation (TxDOT) selects a handful of programs to highlight in the report. TxDOT’s best practices are defined as innovative or unique practices to achieve a goal and exceed required performance objectives.

What makes TDS a best practice? According to the report, “TDS is saving lives because young people are driving the program. Every element, every facet, and every refinement of TDS is influenced by young people. The program’s professional staff provides support and direction when appropriate, but the teens are responsible for making it work. With active program elements for junior high school students all the way through college, the breadth of youth reached by the program is also unprecedented and unmatched.”

Other programs highlighted are:
- Texas A&M AgriLife’s Brazos Valley Injury Prevention Coalition,
- Texas A&M AgriLife Extension Service Passenger Safety,
- Region 6 Education Service Center School Bus Safety Training 101,
- Mothers Against Drunk Driving’s Take the Wheel Program, and
- Texas Municipal Police Association’s Reducing Impaired Driving Among Youth: A Statewide Approach.

“For more information contact Russell Henk at r-henk@tamu.edu

“In the last decade TDS has worked hard to change the way teens think about driving.”
— Russell Henk, TDS Director
Safetynet is produced quarterly by the Center for Transportation Safety. The Center, established by the Texas Legislature in 2001, conducts research and outreach programs through contracts secured with state and federal governmental agencies, as well as private sector interests. The Center's work is focused on developing safer roadways, safer drivers, and addressing the needs of high-risk groups.