Safety Implications of Managed Lane Cross Sectional Elements
(Buffer Width vs. Shoulder Width vs. Lane Width)

2016 Traffic Safety Conference
June 7, 2016

Raul Avelar, Ph.D., P.E.
Kay Fitzpatrick, Ph.D., P.E.
What does Managed Lane mean?

• The term refers to freeway lanes whose operations are actively managed.

• Examples of Managed Lanes:
 ▪ HOV lanes
 ▪ HOT lanes
 ▪ Reversible Lanes
Project Objectives

• Evaluate managed lane facilities that are currently used in the U.S. to inform decisions about lane, buffer, and shoulder (inside and outside) widths.

• To assess the safety impacts of using of narrow widths.
Previous Findings – Freeways

• Freeway crash prediction equations available in *Highway Safety Manual*

• Reduction in freeway shoulder width → increase crashes

• Reduction in freeway lane width → increase crashes

• Increase in crashes may be offset if reductions are done to increase number of freeway lanes
Previous Findings – Managed Lanes

• Florida study → crash prediction equations for HOV / HOT lanes
 ▪ Left shoulder width and 2-3 ft buffer (10 lane freeways) found to influence safety

• California study
 ▪ Wider HOV lane width associated with fewer HOV crashes
 ▪ Wider left shoulder width associated with fewer HOV crashes

• Texas study (narratives) identify following contributors
 ▪ Reduced HOV cross section, location of GP ramps, speed differential
Identify Potential Sites

• Gather **geometric** information for a sample of existing managed lanes
 - Review aerial photographs of several sites in several states (focus on states with available crash data)
 - Key variables
 - Number of managed lanes
 - Managed lane – left shoulder width
 - Managed lane – lane width
 - Separation – barrier, buffer, and width
Potential Site Findings

<table>
<thead>
<tr>
<th>Variable</th>
<th>Range or Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>California, Colorado, Florida, Georgia, Minnesota, New Jersey, New York, Tennessee, Texas, Utah, Virginia, Washington</td>
</tr>
<tr>
<td>Sites</td>
<td>Random selections within the states</td>
</tr>
<tr>
<td>Buffer</td>
<td>Flush (markings only), Barrier, or Pylons</td>
</tr>
<tr>
<td>#Lanes</td>
<td>1, 2, or 3 (focused on 1 lane facilities)</td>
</tr>
<tr>
<td>Lane Width</td>
<td>typically either 11 or 12 ft</td>
</tr>
<tr>
<td>Buffer (flush)</td>
<td>typically around 1 to 2 ft</td>
</tr>
<tr>
<td>Buffer (pylons)</td>
<td>typically around 4 to 5 ft</td>
</tr>
<tr>
<td>Shoulder</td>
<td>typically around 7 ft (extensive variability)</td>
</tr>
</tbody>
</table>
Crash Data

• Determine availability of suitable crash data
 ▪ Highway Safety Information System databases
 – California
 – Washington
 – Minnesota
 – North Carolina
 – Ohio
 – Illinois
 ▪ Texas
Crash Data – Promising Leads

- Texas (2010-2014)
 - Includes variables that have HOV or Managed Lanes descriptors
 - Provide lat / long – improved ability to locate crash on facility
 - Crash narratives could be available
Crash Data – Promising Leads

California (2007-2011)

- Lots of managed lanes

- Crash frequencies in table represent a subset of the state →

<table>
<thead>
<tr>
<th>Location Type</th>
<th>Code</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does Not Apply</td>
<td>-</td>
<td>329</td>
</tr>
<tr>
<td>Unknown Type</td>
<td>---</td>
<td>52239</td>
</tr>
<tr>
<td>Beyond Median Or Barrier Stripe - Driver’s Left</td>
<td>A</td>
<td>999</td>
</tr>
<tr>
<td>Beyond Shoulder - Driver’s Left</td>
<td>B</td>
<td>11513</td>
</tr>
<tr>
<td>Left Shoulder Area</td>
<td>C</td>
<td>286</td>
</tr>
<tr>
<td>Left Lane</td>
<td>D</td>
<td>77156</td>
</tr>
<tr>
<td>Interior Lanes</td>
<td>E</td>
<td>94726</td>
</tr>
<tr>
<td>Right Lane</td>
<td>F</td>
<td>63785</td>
</tr>
<tr>
<td>Right Shoulder Area</td>
<td>G</td>
<td>1822</td>
</tr>
<tr>
<td>Beyond Shoulder - Driver’s</td>
<td>H</td>
<td>11023</td>
</tr>
<tr>
<td>Gore Area</td>
<td>I</td>
<td>134</td>
</tr>
<tr>
<td>Other</td>
<td>J</td>
<td>2110</td>
</tr>
<tr>
<td>HOV Lane</td>
<td>V</td>
<td>15257</td>
</tr>
<tr>
<td>HOV Buffer</td>
<td>W</td>
<td>437</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td>331816</td>
</tr>
</tbody>
</table>

Business Sensitive 10
Site Selection

• Focus on sites with 1 managed lane (rather than 2 lanes)
• Eliminate sites w/ reversible ops or concrete barrier separation
• Prefer managed lanes that are operational 24/7
• Want range of buffer widths, shoulder widths, lane widths
Managed Lane Sections

• Identify locations where the buffer (markings) change

• Classify as non-weaving or “weaving” sections

• Weaving =
 ▪ Ramps
 ▪ Opening in pavement markings
Managed Lane Geometrics

- Lane width (inside markings)
- Shoulder width
- Buffer type and width (includes markings)
General Purpose Lanes

- Number of lanes
- Average lane width (ft)
- Right shoulder width (ft)
- Number of entrance ramps
- Number of exit ramps
- Number of weaving (auxiliary lanes)
- Posted speed limit (mph)
Limits of Sections

• Identify the beginning and ending points for each section
• Texas – use lat / long plus road name to assign crashes to section
• California – use mile post plus road name to assign crashes to section
Other Items

• Posted Speed Limit (mph)
• Direction of travel (E, W, N, S, etc.)
 ▪ Used to match crashes
 ▪ Need obvious plus reasonable directions
• Earliest date ML existence can be verified
 ▪ Used in eliminating crashes that occurred before ML installed
California Sites (All Flush)

<table>
<thead>
<tr>
<th>Highway - Dir</th>
<th>Total Len (mi)</th>
<th>Average LSW (ft)</th>
<th>Average ML (ft)</th>
<th>Average Buffer (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>105-EB</td>
<td>9.4</td>
<td>10.8</td>
<td>10.9</td>
<td>4.8</td>
</tr>
<tr>
<td>105-WB</td>
<td>13.4</td>
<td>10.7</td>
<td>11.6</td>
<td>5</td>
</tr>
<tr>
<td>134-EB</td>
<td>8.1</td>
<td>3.5</td>
<td>11.2</td>
<td>1.5</td>
</tr>
<tr>
<td>134-WB</td>
<td>7.6</td>
<td>1.3</td>
<td>11.2</td>
<td>1.6</td>
</tr>
<tr>
<td>210-EB</td>
<td>19.1</td>
<td>7</td>
<td>11.3</td>
<td>3.2</td>
</tr>
<tr>
<td>210-WB</td>
<td>14.2</td>
<td>7.9</td>
<td>11.4</td>
<td>3.4</td>
</tr>
<tr>
<td>405-NB</td>
<td>29.7</td>
<td>4</td>
<td>10.7</td>
<td>2.6</td>
</tr>
<tr>
<td>405-SB</td>
<td>26.6</td>
<td>4.1</td>
<td>11.1</td>
<td>3.5</td>
</tr>
<tr>
<td>Total or Range</td>
<td>128.0</td>
<td>1-33</td>
<td>10-12</td>
<td>1-12</td>
</tr>
</tbody>
</table>
California Crash Data Reduction

• 2007 to 2011 (5 years)
• Data cleaning and filtering:
 ▪ Remove crashes with no clear direction of travel
 ▪ Remove crashes that occurred before managed lane was installed (i.e., outside the period of time with valid ML geometric data)
• Dataset of 19,388 freeway crashes for analysis
• Of these freeway crashes, 1,995 crashes were coded as “HOV Lane” or “HOV Buffer”
Texas Sites

<table>
<thead>
<tr>
<th>F or P</th>
<th>ST-Cl-Hwy-DIR</th>
<th>Len (mi)</th>
<th>LSW (ft)</th>
<th>Lane (ft)</th>
<th>Buffer (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>TX-DA-75-NB</td>
<td>11.0</td>
<td>3-3.5</td>
<td>11-11.5</td>
<td>4</td>
</tr>
<tr>
<td>P</td>
<td>TX-DA-75-SB</td>
<td>11.0</td>
<td>2-2</td>
<td>11.5-11.5</td>
<td>4</td>
</tr>
<tr>
<td>P</td>
<td>TX-DA-635-EB</td>
<td>8.1</td>
<td>2-3.5</td>
<td>10-10.5</td>
<td>4-6</td>
</tr>
<tr>
<td>P</td>
<td>TX-DA-635-WB</td>
<td>7.4</td>
<td>1-2.5</td>
<td>10-10.5</td>
<td>5.5</td>
</tr>
<tr>
<td>P</td>
<td>TX-HO-10-EB</td>
<td>2.3</td>
<td>17.5-18</td>
<td>13-13.5</td>
<td>5-5.5</td>
</tr>
<tr>
<td>P</td>
<td>TX-HO-10-WB</td>
<td>1.9</td>
<td>17.5-17.5</td>
<td>12.5-12.5</td>
<td>5.5</td>
</tr>
<tr>
<td>F</td>
<td>TX-HO-59S-NB</td>
<td>7.3</td>
<td>10-13</td>
<td>11-12</td>
<td>1.5-5</td>
</tr>
<tr>
<td>F</td>
<td>TX-HO-59S-SB</td>
<td>6.0</td>
<td>9-12</td>
<td>11-12</td>
<td>2-5</td>
</tr>
<tr>
<td>F</td>
<td>TX-HO-290-NB</td>
<td>2.2</td>
<td>1.5-4</td>
<td>10.5-11.5</td>
<td>1.5</td>
</tr>
<tr>
<td>F</td>
<td>TX-HO-290-SB</td>
<td>3.2</td>
<td>1.5-1.5</td>
<td>11-11</td>
<td>2</td>
</tr>
<tr>
<td>Total or Range</td>
<td>60.4</td>
<td>1-18</td>
<td>10-13.5</td>
<td>1.5-6</td>
<td></td>
</tr>
</tbody>
</table>
Texas Crash Data Reduction

- 2009 to 2014 (6 years)
- Data cleaning and filtering:
 - Remove crashes with no clear direction of travel
 - Remove crashes that occurred before managed lane was installed (i.e., outside the period of time with valid ML geometric data)
 - Remove crashes not explicitly coded on freeway routes and explicitly coded as occurred on frontage roads
- Dataset of 8,521 freeway crashes for analysis
- Of these freeway crashes, **only 47 crashes** were coded as “HOV” or “Managed Lane” (ML crashes probably under-reported in Texas)
Evaluations

• Managed-lane related crashes → California only
 ▪ All severity levels
 ▪ Fatal and injury severity levels
 ▪ AADT = volume on managed lane

• Freeway crashes → both California and Texas
 ▪ All severity levels
 ▪ Fatal and injury severity levels
 ▪ AADT = volume on freeway
Findings – California, Managed-Lane Crashes, Fatal & Injury Severity

- Several models considered
- In most cases, only a few of the variables were significant
- When managed lane elements included (shoulder, lane, buffer), only left shoulder width significant
- When ML envelope included, it was significant
Closer Look at Buffers in California

![Graph showing the relationship between flush buffer width and MLB crashes per year per mile per 1000 vehicles per day.](image)
Summary of Key Findings

<table>
<thead>
<tr>
<th>State or HSM</th>
<th>Severity</th>
<th>Location of Crash</th>
<th>Crash Reduction when widening Managed Lane Envelope by 1 ft</th>
<th>Highway Safety Manual: Reduction per Additional Foot of…</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lane</td>
</tr>
<tr>
<td>California</td>
<td>Fatal & Injury</td>
<td>Managed-Lane or Buffer</td>
<td>4.5%</td>
<td>Not available</td>
</tr>
<tr>
<td>HSM</td>
<td>Fatal & Injury</td>
<td>Freeway</td>
<td>Not available</td>
<td>About 3.9%</td>
</tr>
<tr>
<td>California</td>
<td>All</td>
<td>Freeway</td>
<td>2.0%</td>
<td>Not available</td>
</tr>
<tr>
<td>Texas</td>
<td>All</td>
<td>Freeway</td>
<td>2.8%</td>
<td>Not available</td>
</tr>
</tbody>
</table>
Summary of Key Findings

- Managed lane or flush buffer crashes (CA)
 - 4.5% reduction in KAB crashes for each additional foot of managed lane envelope.

- No managed lanes crash reduction in the HSM, however, the HSM does contain other applicable estimates
 - 3.9% crash reduction for each additional foot of freeway lane
 - 1.7% reduction per each additional foot of inside shoulder

- All freeway and all severity crashes
 - Similar reductions in crashes for each additional foot of managed-lane envelope:
 - California, 2.0%
 - Texas 2.8%
Synthesis of Operational Aspects and Safety Implications of Reduced Cross Sectional Elements
(Buffer Width vs. Shoulder Width vs. Lane Width)

DISCUSSION

Raul Avelar, Ph.D., P.E.
Kay Fitzpatrick, Ph.D., P.E.